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Abstract 
Hiatuses pervade the stratigraphic record at all scales from grain boundaries to inter-regional 
unconformities.  Every attempt to measure a rate of accumulation must average together sediment 
increments and surfaces of hiatus.  As the time span of measurement lengthens, longer hiatuses tend 
to be incorporated into the estimated rate.  Consequently, short term rates are systematically faster 
than longer term rates.  As would be expected for a fractal time series, the empirical relationship 
between accumulation rate and the time span of measurement is a negative power law.  Just as a 
measured length for a coastline is meaningless without a statement of the map scale,  a measured rate 
of sediment accumulation requires a statement of the time scale of measurement.  Fractal scaling 
laws offer a means to estimate and interpret the changes in average accumulation rate from one time 
scale to another. 
 
The steepness of the negative power law that relates rate to time span increases with the 
incompleteness of the stratigraphic record.  For steady accumulation and complete sections the slope 
would be zero.  For the most incomplete and unsteady accumulation, the slope approaches minus 
one.  A purely random accumulation process produces a power law with a slope of minus one half;  
less steep negative slopes indicate some degree of persistence or positive correlation between 
successive sediment increments;  steeper negative slopes prove a negative correlation.  Regular 
periodic fluctuations in accumulation are one form of negative correlation;  they produce steep 
negative slopes at time scales close to the period of the fluctuations.  In shallow marine carbonate 
environments the negative power laws steepen markedly at time spans of tens of thousands to 
hundreds of thousands of years;  the time scale suggests that the steepening records the 
preponderance of hiatuses that have been generated by Milankovitch-scale changes of sea-level.  
 
A plot of the age and level of sediment increments preserved in a stratigraphic section has a 
staircase-like shape, in which the treads represent surfaces of hiatus.  Sequence boundaries of known 
age fix the coordinates of points on these treads.  Rocks dated by radiometric techniques fix the 
coordinates of points on the risers.  Horizons across which the fauna, isotopic composition or 
magnetic polarity are found to change may correspond to points on either the treads or the risers.  
The staircase plot forms the lower bound of the true accumulation history which would be 
determined by continuous monitoring of the elevation of the sediment surface during accumulation.  
Thus, the relationship of accumulation rate to time span also depends to some extent upon the 
method used to date the sediment. 
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Rates and Unsteady Processes 
Accumulation rate has a deceptively simple formulation -- measure the thickness of the sedimentary 
deposit and divide by the time that elapsed between the start and finish of deposition.  Thus, changes 
in thickness of a deposit or changes in the elevation of the sedimentary surface are, in effect, 
standardized for differences in the time span of observation.  Nevertheless, a measured accumulation 
rate has no general power to convert deposit thickness to duration of deposition, or stratigraphic 
elevation to age.  If sediment accumulation were steady,  then a rate determined from any portion of 
the accumulation history (regardless of age and duration) would indeed be the correct conversion 
factor for every other portion.  We could interpolate age linearly between dated horizons and one 
measured rate would support extrapolation beyond dated intervals.  But sedimentation is, of course, 
inherently unsteady and discontinuous.  Surfaces of hiatuses record the discontinuities.   
 
This paper will show that the presence of hiatuses causes the expected accumulation rate to become 
a strong negative function of the time span of measurement.  Empirical data demonstrate that rates 
measured at one time span cannot be extended with impunity to other time spans anywhere in the 
range from minutes and hours to hundreds of millions of years.  The underlying principle becomes 
almost intuitively obvious when we consider the deposition of sediment as a succession of 
instantaneous arrivals of discrete particles with finite diameters.  Each particle diameter is added to 
the net thickness at an instant in time.  Consequently, instantaneous accumulation rates can be 
infinitely high.  Of course, nobody would consider applying such instantaneous accumulation rates 
to longer time intervals of geologic interest.  But rates measured on the relatively short time spans of 
human observation are routinely applied to much longer stratigraphic time scales.  The conceptual 
error is the same as extrapolating from the instantaneous rates.  Rates from different time scales are 
not directly comparable and hiatuses are the cause, whether the hiatuses are recorded at the scale of 
grain-to-grain boundaries or inter-regional unconformities. 
 
Fortunately, fractal scaling laws offer a means to estimate and interpret the changes in average 
accumulation rate from one time scale to another.  After establishing how accumulation rates scale 
with time span for a variety of depositional environments,  the paper reviews some standard results 
from fractal mathematics that help to relate the scaling laws to properties of the underlying geologic 
processes.  Then, two examples serve to demonstrate how the failure to appreciate the time-scale 
dependence of rates does lead to false geologic interpretations.  Next, we examine how the scaling 
laws can vary with the method of determination of age.  With these insights, the paper concludes by 
analyzing a single stratigraphic section that has been dated by both radiometric and paleomagnetic 
methods.  Before any of this, however, it is useful to review the nature of hiatuses and the options 
for displaying stratigraphic data. 
 
 
The Pervasive and Composite Nature of Hiatuses 
Hiatuses pervade the stratigraphic record at all spatial scales from grain boundaries to bedding 
planes to inter-regional unconformities [1,2].  Surfaces of hiatus record time intervals without net 
deposition.  The duration of these intervals ranges from the fractions of a second between successive 
grain arrivals at the sediment surface to the millions of years that may elapse between marine 
flooding events on continental interiors.  Tiny hiatuses must be pervasive because sediment consists 
of discrete particles.  The areal extent of intergranular hiatuses must be extremely limited.  Bedding 
planes and laminae record innumerable discontinuities in accumulation at larger spatial scales and 
longer times scales.  And practitioners of sequence stratigraphy have advanced the case that inter-
regional hiatuses are sufficiently commonplace and areally extensive to provide a basis for global 
time correlation.   
 
During the time interval in which a surface of hiatus is generated, deposition may simply have 
ceased or erosion may have removed some of the previously deposited sediment.  Consequently,  
three distinctly different components of the accumulation history may all be condensed into a single 
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surface of hiatus:  episodes of non-deposition;  episodes of erosion;  and time intervals occupied by 
the accumulation of sediment that is subsequently eroded [3].  The closing sections of this paper  
explore the fact that some methods used to determine the age of sedimentary deposits can produce 
dates that fall within these intervals of non-deposition, erosion, and temporary deposition that make 
up hiatuses.   
 

                     
 

Figure 1.  The distinction between the accumulation history (a), staircase plot (b), 
columnar section (c), and time lines (d, e) for a hypothetical sedimentary deposit.  Time 
line d distinguishes intervals of deposition from intervals of erosion.  Time line e 
distinguishes time intervals recorded by preserved sediment increments from intervals of 
hiatus.  The magnifying glasses caution that smaller hiatuses exist below the resolution of 
this diagram.  In the limit of extremely fine resolution, the solid bars in time lines d and e 
become sets of discrete points and the risers in curves a and b become vertical. 

 

At any given level of resolution, the sedimentary stratigraphic record may be regarded as a stack of 
sediment increments separated by surfaces of hiatus.  But closer inspection should always reveal that 
the sediment increments include smaller hiatuses, down to the resolution of individual grains.  
Systems like this in which a common motif is nested within itself at different scales are often 
usefully viewed from the perspective of fractal geometry.  Sediment accumulation is no exception. 
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Every attempt to measure a rate of accumulation averages across sediment increments and the 
intervening surfaces of hiatus.  As the time span of measurement increases, larger hiatuses may be 
incorporated into the estimated rate.  As the time span of measurement decreases, the revelation of 
smaller hiatuses requires that increasing numbers of discrete sediment increments are revealed too.  
The net time allotted to the increments must be reduced because more time is seen to be apportioned 
to the hiatuses as the resolution increases;  but the net thickness does not change;  so the 
accumulation rate of the depositional increments must be found to increase as their individual 
thicknesses decrease.  Thus, the mean (or expected) rate of sediment accumulation becomes 
inversely related to time span [2,4].  The empirical relationship between accumulation rate and time 
scale will be shown to be a “negative power law”  -  this term conveniently describes an inverse 
linear relationship between the logarithms of two variables.  Such relationships characterize fractals 
[5]. 

 
 

Table 1:  Properties of Different Representations of Sediment Accumulation 
 
 ACCUMULATION 

HISTORY  (FIG. 1a) 
STAIRCASE  PLOT 

(FIG. 1b) 
TIME  LINES 
(FIGS. 1d ,1e) 

 

Appearance Time series with positive 
and negative slopes 

Time series with only 
zero and positive slopes 

 

Broken lines 
 

Represents Complete history of  the 
deposit thickness during 
accumulation process 

Age and elevation of 
horizons in preserved 
sedimentary section 

Portions of elapsed time 
recorded by deposition (1d) 
or by preserved sediment (1e) 

Metric space Thickness  -  Age Elevation  -  Age Age 
Shortcoming Practical,  but not explicit,  lower limit of age resolution 
Range of fractal 
dimension 

 

1.0  -  2.0 
 

1.0   [19] 
 

0.0  -  1.0 

Possible fractal 
analogs 

Fractional Brownian 
walks 

 

Devils Staircase 
 

Cantor Bar,     Levy Dust 

Physical signif-
icance of fractal 
dimension 

Degree and nature of 
feed-back during 
accumulation 

 

A borderline fractal! 
[19] 

Completeness of stratigraphic 
record (Fig. 1e) or continuity 
of deposition (Fig. 1d) 

 
 

Graphical Representation of Sediment Accumulation 
The most common representation of sedimentary deposits is a columnar section, drawn against a 
thickness scale (Fig. 1c).  To appreciate the fractal nature of sediment accumulation and the role of 
hiatuses, however, we need a graphic that includes a time scale.  Six options are considered below.  
In the first four, time is represented by a scale of age (Table 1).  Two of these options (accumulation 
history and staircase plot) retain the thickness scale, so that the slope of the graph shows 
accumulation rate.  The two time-line options do not; they record only the presence or absence of 
sediment for a given time interval (Fig. 1d, 1e).  Notice (Fig. 1) that none of these options can be 
drafted in practice without an implicit and artificial  lower limit of time-resolution.  The fifth and 
sixth options make time-resolution explicit;  they plot the durations of time intervals (i.e. resolution), 
rather than their ages.  Although this ploy loses all information about the sequence of the intervals, it 
allows empirical data from many different deposits to be combined seamlessly into one graph. 
 
The Accumulation History:    If all the successive elevations of the sediment surface are plotted in 
historic sequence, the resultant time series represents a complete accumulation history (Fig. 1a).  It 
includes details of all the depositional and erosional episodes during time spans that are ultimately 
recorded by surfaces of hiatus.  Notice that those portions of the accumulation history that represent 
hiatuses begin and end at the same elevation.  If erosion has occurred, these portions assume an 
asymmetric form:  they begin with positive slope in a depositional interval,  arch over a maximum, 
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and end with zero slope at minimum.  These portions of the plot would not be recoverable from real 
stratigraphic sections even if every preserved horizon were dated. 
 
The Staircase Plot:  A complete accounting of the elevation/age coordinates for all preserved 
horizons in a sedimentary deposit would assume the form of an irregular staircase (Fig. 1b) in which 
hiatuses appear as horizontal treads.  The staircase plot omits those segments of the accumulation 
history that have negative slope (erosion episodes) or are higher than subsequent minima (erosional 
losses of sediment).  Reconstruction of the staircase plot from real sections is limited only by the 
number of datable horizons.  Notice that the accumulation history lies on or above the staircase plot, 
never below it.  The recoverable staircase plot provides a lower bound for the true accumulation 
history;  thus, the staircase plot is a systematically biased estimate of the accumulation history.   
 
Two Time-Line Plots:  Sediment accumulation may also be represented as one-dimensional time 
lines (Fig. 1d, 1e) that ignore the elevation of the sediment surface.  The solid portions of the time 
line report that the corresponding time interval is characterized by some deposition, regardless of 
thickness.  Two versions of the time line are possible.  One reports only the intervals of deposition 
that survive subsequent erosion  (Fig. 1e) and thus represents the completeness of a stratigraphic 
section.  The breaks in this line mark the duration of hiatuses.  Alternatively, all depositional 
intervals may be included (Fig. 1d), whether later lost to erosion or not.  In this case, the time line 
records the continuity of deposition,  i.e. what an observer would have noted at the site of deposition.  
Line 1e is a one-dimensional projection of the risers in the staircase plot;  line 1d is the 
corresponding one-dimensional projection of the accumulation history. 
 
Plots of Rate or Thickness against Time Span:  The previous four diagrams are useful images for 
single sedimentary sections.  But they are difficult to reconstruct in detail because real deposits 
typically include too few dated horizons.  Neither do they lend themselves readily to combining data 
from more than one stratigraphic section onto a single line  --  the demands upon time correlation are 
typically too hard to meet.  If thickness or rate are plotted against the duration of the dated interval 
rather than its age, however, measurements from many different deposits or stratigraphic sections 
can be combined into one graph.   
 
Logarithmic plots of average accumulation rate against time-span summarize nearly all of the 
empirical data that support later sections of this paper (Figs. 4-6).  The logarithmic scales effectively 
display the wide range of measured values and reveal the negative power law relationships.  But the 
graphs may initially trouble some readers, especially those unfamiliar with fractal geometry, because 
they plot a fraction (thickness/time) against its denominator (time).  This practice deliberately 
highlights the scale-dependence of rates.  In attempting to prevent application of rates to the wrong 
time spans,  however, it invites an improper interpretation of correlation coefficients.  It is crucial to 
realize that contours of constant thickness can always be drawn on a plot of rate against time.  On a 
logarithmic graph, these contours are straight lines with a slope of -1. 
 
On a plot of accumulated thickness (y-axis) against time span (x-axis), a regression with zero slope 
would imply that accumulated thickness is independent of time span;  the correlation coefficient 
would be zero.  Plotted as accumulation rate against time span, however, the same data would 
generate a -1 slope and a non-zero correlation coefficient.  Thus, some readers may worry that 
regressions of rate against time span include a spurious component of correlation.  The degree of 
correlation is spurious if attributed to thickness and time.  Some negative correlation of 
accumulation rate and time span is indeed a mathematical inevitability whenever the deposit includes 
hiatuses  --  the highest rates can be sustained only for relatively short time intervals.  The peculiarity 
of the plot and the trouble with accumulation rates are one and the same.  Unfortunately, more 
geologists tend to worry about the plots than to worry about using rates without regard to time scale.  
Concern about improper use of correlation coefficients should translate directly to concern about 
improper use of accumulation rates.  Notice also that if thickness were truly independent of time 
span (power law gradient of -1 on these plots) this would be a highly significant observation for 
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stratigraphy.  It would imply that the thickness of deposits generally provides no guide whatever to 
the amount of time that they span.  Such steep negative slopes are, in fact, quite rare in the empirical 
data and persist for limited ranges of time span.  We shall see that they can be explained in terms of 
periodic components in the accumulation history. 
  
For steady accumulation without hiatuses, rate would be a constant and independent of time scale;  
the plot of rate against time span would assume a zero slope if accumulation were steady.  Positive 
slopes should never result from an accurate and complete set of measurements.  Negative slopes 
indicate the presence of hiatuses and an incomplete stratigraphic record [2].  Steeper negative slopes 
reflect increasing incompleteness.  The limiting steepness is -1  --  constant expected thickness 
regardless of time span.  Only an unrealistically stylized cyclic accumulation history could reach this 
limit.  It would have to be imagined to operate as follows: the depositional process must generate 
rapid periodic alternations of depositional and erosional phases in which all depositional increments 
have the same thickness and are precisely eroded away before the next increment is added.  
Regardless of time span, all measurements of accumulation rate would then capture no more than 
one sediment increment.  There is no net accumulation in this model at time spans longer than the 
alternating phases;  it is the limiting extreme case of stratigraphic incompleteness.  The significance 
of slopes between 0 and -1 will be interpreted in a later section from some basic equations of fractal 
mathematics. 
 
Our crucial lesson from fractal mathematics will be that single measurements of a property that is 
dependent upon time scale may have no validity beyond the time span of measurement.  The lesson 
is generally better appreciated in the context of length scales and coastlines.  And so, for readers who 
are not familiar with fractals, the next section reviews the role of spatial scale and the hierarchy of 
embayments in the problem of coastline length.  A firm foundation in purely spatial patterns eases 
the conceptual leap to the fractal view of time series, which is at the heart of understanding the 
influence of time scale and hiatuses on accumulation rate.  Of course, the time scale introduces 
significant differences between coastlines and accumulation histories which should be understood as 
well as the analogies between coastline length and accumulation rate (Table 2).   The analogy is 
intended to provide a more familiar example of a property that is in part a function of the scale of 
measurement. 

 

 

                     
 

Figure 2.  Coastlines drawn at different scales.  Details of the coast of Lewis (a: 10km scale 
bar), which is an island on the coastline of northern Great Britain (b:  100 km scale bar), 
which is an island on the coastline of northwest Europe (c:  1000km scale bar).   All three 
maps have comparable complexity;  nothing inherent in the pattern of the coastline would 
reveal the scale of the maps to a stranger. 
 

The Fractal View of Coastlines 
 

It is simply not reasonable to seek a single value to describe the length of a coastline.  Unless the 
coast is uncommonly smooth, it has no unique length [6,7];  the mapped length of a coastline varies 
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with map scale (Fig. 2).  Introductions to fractal geometry routinely explain this coastline paradox.  
For reasons that are closely related, but only rarely explained [8,9], no single value may reasonably 
be expected to describe the rate of accumulation of a sedimentary deposit.  Mean measured 
accumulation rates vary with the degree of resolution achieved within the hierarchy of sediment 
increments and hiatuses.  
 
Given a map, measurement of the length of a coastline presents no great difficulty.  Yet the value 
obtained has very little meaning:  if the map scale had been different, the measured length of the 
coastline would probably have been different too.  A larger scale generally reveals more detail in the 
hierarchy of embayments (Fig. 2), leading to a greater measured length.  The length of a coastline is 
evidently a property of both the coastline and the scale of measurement.  The scaling relationship is a 
negative power law  (Fig. 3). 

                    
Figure 3.  Two examples of negative power laws that describe coastlines.  The circles 
represent measurements from a more intricately complex coastline with a steeper 
negative regression and a larger fractal dimension than the coastline reported by the 
rectangles;  its length changes more dramatically with map scale than the simpler 
coastline represented by the rectangles. 
 

 
 

The slope of the power law describes the complexity of the coastline.  As the shape of the coastline 
becomes more intricate, the negative slope steepens.  A uniform slope means that the coastal 
complexity appears the same across all scales.  The bays and headlands are self-similar at all scales 
and only somebody familiar with the region can recognize the map scale from the form of the 
coastline alone.  If the slope of the power law changes at some spatial scale, then the complexity of 
the coastline changes as a function of scale;  in other words, bays are not equally well developed at 
all scales. 
 
More intricately complex coastlines are said to have a larger fractal dimension.  Fractal dimension is 
a scale-independent measure of how densely the spatial fractal occupies the space within which it 
lies.  For example, a set of points arrayed to form a straight but broken line is a pattern intermediate 
between a single point (dimension = 0) and a complete line (dimension = 1).  The term fractal 
describes this concept of  “fractional” dimensions.  A coastline occupies part of a two dimensional 
map space; so its fractal dimension may range between 1 and 2.  The map of a perfectly smooth 
straight coast would be a Euclidean line.  Its fractal dimension would be 1.0.  The decimal form is 
used deliberately to admit the possibility of dimensions with fractional values.  More intricate 
coastlines effectively occupy more of the map.  In the limiting case, which is unattainable for a real 
coastline, a whole area of the map would be filled by a line that keeps doubling back upon itself. 
 

           Table 2:  Comparison of Fractal Properties  
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PARAMETER: LENGTH  OF COASTLINE RATE OF SEDIMENT ACCUMULATION 
Coordinate  
system 

Latitude  and  longitude 
(two length scales) 

Elevation or thickness  and  time 
(a length scale and a time scale) 

 
Simple 
formulation 

Number of measuring rods, laid 
end-to end, that mimic coastline  
(or number of map cells which 
coastline enters) 

 

Net thickness of deposited sediment 
divided by the time elapsed between onset 
and cessation of deposition 

 
Pitfalls 

Single values should not be 
extrapolated or compared without 
attention to length scale 

 

Single values should not be extrapolated or 
compared without attention to time scale 

Source of fractal 
complexity 

Nested hierarchy of bays, 
headlands and islands 

Nested hierarchy of sediment increments  
and surfaces of hiatuses 

 

Critical scale Length of measuring rod  
(or size of counting box) 

 

Time span over which rate is averaged 
 

Diagnostic 
regression 

Log.-measured-length  as a 
function of  log.-size of the 
measuring device 

 

Log.-rate  as a function of 
log.-time-span of measurement 

 

Range of possible 
gradients 

0.00  to  -1.00   
A smooth straight coast would 
generate  0.00 

0.00  to  -1.00  
Steady accumulation generates 0.00 
A random walk generates  -0.50 

 
Corresponding 
fractal dimension 

 
1.00  to  2.00 
 

0.00  to  1.00  for the completeness of the 
sedimentary section (a broken line) 
Between 1.0 and 2.0  for the accumulation 
history (a time series) 

Meaning of steeper 
negative gradient 

More intricate and complex 
pattern of embayments 

Less complete stratigraphic record; 
i.e. more time recorded by hiatuses 

 
Lower limit of 
determination 

 

Surface texture of cliff materials 
or beach particles   (length 
becomes impractically large) 

Instantaneous arrival of individual grains at 
sediment/fluid interface (rate becomes 
infinitely large as time span approaches 
zero) 

Upper limit of 
determination: 

 

Size of the Continent Overall duration of the sedimentary deposit 
or stratigraphic section 

 
 
Significant 
differences 

1. Coastline may intersect same 
longitude at different values of 
latitude and vice versa. 

2. The nested bay-headland motif 
may be self-similar. 

3. Coastlines are a sets of 
continuous loops (continents 
and islands).  

1. Sediment surface may have the same 
elevation at different times, but only one 
elevation for each moment in time. 

2. The nested hiatus-increment motif may 
be self-affine. 

3. If single grain arrivals are resolved, then 
accumulation histories are seen to have 
discontinuities in elevation.  

 
Sediment Accumulation as a Fractal 
Just as the measured length of a coastline requires a statement of the distance scale before it has real 
meaning, so too the measured rate of sediment accumulation or an estimate of the completeness of a 
stratigraphic section should be accompanied by a statement of the time scale.  In other words, the 
rate of accumulation is a property of both the depositional system and the time scale.  The diagrams 
in Figure 1 all have an arbitrary limit on time resolution.  If redrawn with finer resolution, the time 
lines (Fig. 1d, 1e) include more breaks and the staircase plot includes more steps.  Notice that the 
inclusion of more treads (in the magnified images) forces the steps to become shorter and steeper 
because the long-term slope is fixed.  The incremental accumulation rates inevitably increase when 
examined at finer resolution. 
 
The broken time lines that represent the completeness of a stratigraphic section may obviously be 
considered as fractals with a dimension between zero and one.  Readers familiar with fractal 
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geometry may be reminded of the “Cantor Set” fractal [20].  A Cantor Set is a string of dashes 
(Cantor Bar) or points (Cantor Dust) generated by erasing part of a straight line, and then repeating 
the erasure pattern on the shorter line segments that remain.  We might use the Cantor Bar as an 
analog for stratigraphic time lines, but the rules for preparing the bar hardly compare with real 
depositional processes.  Furthermore, the Cantor Bar generates a wide range of hiatus lengths, whose 
ages always reveal a nested regularity.  When a random distribution of hiatuses is preferred, then the 
fractal mathematics of the Levy Dust are appropriate [21].  The Cantor Set is intimately related to 
another fractal, the Devil’s Staircase [19], which could be used to model the stratigraphic staircase 
plots.   The Devil’s Staircase has repeating and nested patterns in its sequence of steps;  stratigraphic 
staircase plots should be free to exhibit random step distributions. 

 

                  
 

Figure 4.  Mean accumulation rates for terrigenous sediments on passive continental 
margins.  a-a’: deltas (diamonds;  2,988 empirical rate determinations);  b-b’: shelf seas 
(filled circles;  22,636);  c-c’:  continental slopes (crosses;  6,421);  d-d’: continental 
rises and abyssal plains (squares: 10,821);  e-e’: abyssal red clays (open circles; 2,215).  
Rates are averaged for logarithmically scaled windows of time span; there are five, non-
overlapping windows for each order of magnitude. 

 

 
 

Although the Cantor Set and Devil’s Staircase produce patterns that could simulate some graphical 
representations of sediment accumulation, it is important to realize that the algorithms used to 
generate these fractal images are not necessarily analogous to any sedimentary stratigraphic process.  
These fractals are two dimensional spatial images and some simple operations in space make no 
sense in the time dimension because time has a real irreversible sense of direction.  Of course, mere 
comparison of images is the least sophisticated application of fractals.  Fortunately, a large body of 
fractal mathematics concerns time series, rather than spatial patterns, and is these fractal 
relationships that are directly applicable to understanding accumulation rates.   
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The accumulation history of a sedimentary deposit is a time series that must incorporate the 
fluctuations in the level of the sediment surface which represent a nested hierarchy of hiatuses.  By 
analogy with coastlines, we might expect the complexity of the accumulation history to be described 
by a fractional dimension between 1.0 and 2.0.  But the coordinates of each point are now elevation 
(or thickness) and time.  Technically, alteration of one axis from a length-scale to a time-scale has 
moved us from self-similar fractals to the realm of self-affine fractals.  The term self-affine 
acknowledges that the elevation and time coordinates cannot be measured in the same units.  There 
is no intrinsically correct proportion for the vertical and horizontal scales of an accumulation history.   
 
Experts differ on the propriety of assigning a fractal dimension to self-affine fractals.  Instead, there 
are named fractal coefficients that assume values in a fixed range to describe the relative complexity 
of time series.  These coefficients are analogous to the fractal dimension of self-similar fractals.  
Both self-similar and self-affine fractal scaling are described by power laws and the slopes of the 
power laws relate directly to the fractal dimensions and coefficients respectively.  The best proof that 
sediment accumulation has fractal properties is a power-law dependence of accumulation rate upon 
time span. 
 
 

 

                          
 
 

Figure 5.  Mean accumulation rates for marine carbonate sediments.  a-a’: peritidal 
platform and reef deposits (filled circles;  27,029 empirically determined rates);  b: 
periplatform apron deposits (open squares;  7,693);  c-c’:  calcareous oozes remote 
from carbonate platforms (open circles:  68,315). 

 
 

Power Law Dependence of Accumulation Rate upon Time Span 
The empirical data for this paper are large compilations of accumulation rates and their dependence 
upon the time span of measurement.  Plots of rate against time span have been prepared for a wide 
range of depositional environments (Figs, 4-6) [2,4,10].  For the length of a particular coastline, a 
few measurements at different scales suffice to reveal that the scaling follows a power law.  To 
characterize the expected rates of accumulation for a whole depositional environment considerably 
larger samples are needed.  A small number of rate determinations may produce a quite spurious 
slope in this exercise, because the range of measurable rates at any one time scale is quite large. The 
empirical relationships in figures 4 and 5 stabilized after the compilation of thousands of rate 
determinations from many different sites. 
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Although each time span is characterized by a large variance in the measured rates, this does not 
mask the overall negative regression for large samples.  Notice that the negative gradients 
characterize a very wide range of time scales;  we must reckon that the sedimentary stratigraphic 
record incorporates hiatuses with this same wide range of durations.  The steepness of the negative 
slope and, thus, the expected incompleteness of stratigraphic sections varies with environment of 
deposition, especially at short time spans.  But differences that may be attributable to environment of 
deposition decrease with increasing time span [2].  This probably means that depositional processes 
are not the primary influence on the distribution of hiatuses at time scales longer than about ten 
thousand years.  At long time scales the most influential factor must be less dependent upon 
depositional environment and operate on a larger spatial scale to explain the convergence of the 
power laws.  Lithospheric subsidence likely becomes the most significant determinant of the long-
term accommodation of sediment.  It can explain the long-term convergence of plots from different 
shallow-marine environments.  Accumulation on abyssal ocean floors would not be limited by 
subsidence;  and so, the difference between abyssal and shallow-marine accumulation rates can be 
sustained to very long time spans. 
 
 
The Problem of “Representative” Accumulation Rates   
It is evident from figures 4-6 that far more of the total variability in accumulation rate is explained 
by the time span over which the rate is determined than by either the depositional environment or the 
age of the sediments.  The characteristic accumulation rates for one depositional environment may 
be represented by a single power law that describes how rate scales with time span, but not by a 
single rate.  Although it is reasonable to seek a single accumulation rate that represents the average 
for a depositional environment at a given time scale, even this exercise causes trouble. 

 

                        
Figure 6.  Mean rates of accretion of marine manganese nodules and crusts from 
shelf seas (squares a-a’, 85 determinations) and abyssal depths (circles b-b’, 1,054). 
 

A random, short term observation of most modern flood plains and shelf seas, for example, would 
most likely be unable to measure any sediment accumulation.  Much of the time, sediment does not 
accumulate.  Only a very long series of short-term observations would ensure that the mean rate 
included a representative number of zero values.  And in practice it would be impossible to know 
when the series was long enough.  Empirical logarithmic plots like figures 4-6 seem, at first glance, 
to compound the problem because they cannot show negative or zero values anyway.  They show the 
average accumulation rate only for intervals in which there is some measurable net deposition.  The 
proper proportion of intervals of zero net-deposition, which is so difficult to measure directly, is now 
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recoverable, however;  it is revealed by the reduction in mean rate at longer time spans.  If the 
average rate for ten thousand-year intervals is four times that for hundred thousand-year intervals, 
for example,  then only one in four of the ten thousand year intervals need to be represented by 
sediment increments, in the longer term, and the other three fourths must be hiatuses.   
 
In this way the steepness and length of the negative slope of any segment of the plot describes the 
incompleteness of the sedimentary record at the time scales of its end points [2,11].  The ratio of the 
long-term to the short-term accumulation rate is the proportion of elapsed time represented, on 
average, by sediment when a stratigraphic section at the long time scale is resolved into sediment 
increments at the scale of the short term end point.  The ratio decreases as the length and steepness 
of the segment increases.  This quantifies our expectation that the stratigraphic record must reveal 
more and more hiatuses when viewed at finer and finer resolution. 
 
Because the empirical scaling laws in figures 4-6 are based upon rates from many different locations,  
purely local differences in the frequency distribution of hiatuses are likely to cancel one another out 
and have no impact on the general slope.  The resulting negative power laws capture only the 
globally persistent features of the hierarchy of hiatuses.  They may reflect the characteristic time 
scales of processes that accumulate and accommodate sediment.  In order of increasing time scale, 
these processes would be the depositional mechanisms, global sea-level and climate change,  and 
lithospheric subsidence.  Tides and storms may dominate shallow marine accumulation at time scales 
of a few years down to a few hours.  At time scales of tens and hundreds of thousands of years, 
astronomically forced climate change is likely to become a more powerful influence of sediment 
accommodation.  Cooling and subsidence of the oceanic lithosphere accommodates stacks of eustatic 
cyclothems at time scales of tens of millions of years. 
 
In shallow marine environments (Figs. 4ab, 5a) the negative slopes tend to steepen markedly at time 
scales of tens of thousands to hundreds of thousands of years.  The simplest explanation [11] is that 
hiatuses with this periodicity are more prevalent than hiatuses at longer or shorter intervals.  Thus, 
the negative power laws seem to capture the impact of Milankovitch scale rhythms in eustasy and 
sediment accommodation.  Because these cycles are driven by global climate change, it is 
reasonable to suppose that their influence upon accumulation rates would survive the process of 
compositing measurements from hundreds of different localities.  For carbonate platforms (Fig. 5a), 
average accumulation rates fall to 10-20% of their shorter term values over the Milankovitch range 
of time scales.  This implies that the surfaces of hiatus, which many stratigraphers use to delimit 
meter-scale “cyclothems,”  record 80-90% of the time in each accommodation cycle [11].  Thus, 
interpretation of the slope of the power law has answered the difficult question of the proper 
apportionment of intervals with no net deposition.   
 
As the time span tends to zero, the negative scaling laws in figures 4-6 imply that accumulation rate 
could increase without bound.  As we have already seen, this is an entirely realistic expectation 
because sediment is deposited as a succession of discrete particles.  At the moment of arrival of a 
single sediment grain, accumulation rate is infinitely rapid;  the entire finite grain thickness 
instantaneously becomes part of the deposit. 

 
 
 

Interpreting the Slope of the Power Law 
Numerical models can reveal many aspects of the significance of the slope of the power laws.  The  
models allow the accumulation histories to be exactly prescribed;  they facilitate much more intense 
sampling of age and elevation coordinates than is possible in real stratigraphic sections; and they 
eliminate the measurement error associated with empirical data.  For some fractals that can mimic 
key properties of stratigraphic accumulation histories, staircase plots and time lines, there are 
standard equations from which the form of the negative power law may be determined directly.  For 
other numerical models of sediment accumulation, however, plots of rate against time span can more 
easily be prepared from the outcomes of numerous computer runs. 
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Both approaches will admittedly investigate much simpler time series than the accumulation 
histories of real sedimentary deposits;  they are models rather than simulations.  The goal of the 
exercise is to produce time series that isolate different aspects sediment accumulation histories with 
regard to the distribution of hiatuses and to look for corresponding differences in the power laws.  
By manipulating the various components of time series it is hoped to recognize the contribution of 
each to the power law.  These components are the steady trend or ‘drift’ (which might model long 
term subsidence), periodic components (climate and sea-level cycles, perhaps), and the stochastic 
component (some aspects of the depositional process).  We shall start with a simple periodic model 
and then examine the Cantor Set analogy.  The stochastic element will be modeled as a Brownian 
Walk, which is a fractal time series with standard equations that can be adopted for geologic 
situations. 
 

                            
 

Figure 7.  Mean accumulation rates for a sine-wave model of periodic accumulation.  The 
model adds a single sine wave (period and wave-height shown) to a secular trend (constant 
positive slope).  The wave-height plots as a line with slope -1 because it is a line of constant 
thickness.  Mean rates are illustrated as determined from:   a-a’: dated rocks in cycles that 
have completed their erosional phases;  b: dated changes;  and c: dated hiatuses;  d-d’: dated 
rocks from the youngest cycle, prior to any erosional losses. 

 
 
 

Regular Periodic Models of Accumulation:  To isolate the influence of a regular periodicity in the 
distribution of hiatuses, eliminate all stochastic components from the model and leave just one sine 
wave and the trend component [2].  The model generates hiatuses with fixed size and spacing.  The 
resulting regressions of rate upon time span (Fig. 7) have three segments with different slope.  In the 
longest- and shortest-term segments, the slope approaches zero.  Measurements at time spans much 
longer than the interval between hiatuses are insensitive to the shorter and regularly spaced hiatuses; 
they see only the steady trend.  At time spans much shorter than the duration of the hiatuses, 
measured rates capture only the rates of accumulation within the sediment increments.  Between 
these two time scales, the slope is steeper, approaching -1.0.  The steep portion approximates a line 
of constant thickness equal to the thickness of the individual sedimentary cyclothems that remain 
after completion of the erosional phase of the cycle. 
 
The break in slope at the shorter-term end of the steep segment approximates the duration and 
thickness of the sediment increments between hiatuses.  The height of the steep segment increases 
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with the fraction of the cycle that is recorded by hiatus.  Thus, the pronounced step in the empirical 
scaling law for accumulation rates in shallow carbonate environments (Fig. 5a) was explained in 
terms of a pervasive periodic control upon sediment accumulation  --  Milankovitch-scale eustatic 
cycles [11].  For shallow-marine terrigenous sediments, the corresponding step is less distinct (Fig. 
4b);  perhaps the difference is attributable to fluvial processes that continue to distribute sediment on 
sandy shelves during low-stands of sea level. 
 
If more sine waves with different period and amplitude are added to the periodic model, the scaling 
law must incorporate more steps [2,11];  the steps tend to merge and interfere with one another, 
giving the impression of a less steep overall slope.  Almost any accumulation history could be 
simulated by including a large enough number of different periodic components with carefully 
selected period and amplitude;  this principle underlies Fourier analysis.  Eventually, however, plots 
with multiple periodic components become indistinguishable from those generated by models which 
are dominated by the stochastic component.  Although the numerical model has revealed the 
influence of a dominant periodic component on the negative power laws,  the exercise should not be 
compounded in an attempt to reach detailed simulation of the empirical plots unless it is realized that 
the solutions will not necessarily represent the real depositional dynamics.  
 
The Cantor Bar Analogy:  It is instructive to examine briefly a standard result for the Cantor Bar 
fractal because it reveals how simply the slope of the negative power law can be related to fractal 
dimension or fractal coefficient.  Like a stratigraphic time-line, the Cantor Bar does not model 
thickness.  We must recast its descriptive equations into the language of sedimentary stratigraphy by 
including a constant, K, that depends upon the overall rate of accumulation for the whole section 
[9,21].  The expected rate of deposition, r, predicted by the Cantor model for a time interval of 
length t is then a decreasing power law function of that time interval: 
 
           r  =  Kt(d-1)      (1) 
 
which has a slope (d-1) in logarithmic coordinates: 
 
     log r  =  (d-1)log t + log K    (2) 
 
Equation 2 has the standard form for a straight line in logarithmic coordinates (y = mx + C; where m 
is the slope of the line).  The exponent d must vary between zero and one so that d-1 can model 
empirical plots with slopes between zero and minus one.  Plotnick [21: Eq. 1.9] equates d with the 
“Lipschitz-Holder exponent” of fractal mathematics.  It is the fractal dimension of the Cantor Bar [9: 
Eq. 2.13].  So, the fractal dimension of the time-line graphics (Fig. 1d-e), which describe the 
continuity and completeness of accumulation, will be one plus the slope of the power law that relates 
accumulation rate to time span.  The completeness of the time-lines falls as we examine them at finer 
and finer resolution.  The rate of loss of completeness with increasing resolution is determined by 
the fractal dimension;  and the dimension can be calculated from the slope of the negative power law 
as revealed by empirical determinations.  In Figures 4 and 5 the slopes tend to be somewhat less 
steep, and the expected completeness correspondingly higher, for deeper marine deposits and at long 
time scales than in short-term accumulation above wave base. 
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Figure 8.  Mean accumulation rates for a Brownian motion model of episodic accumulation.  
The individual erosional and deposition increments are normally distributed with mean and 
standard deviation as shown.  Mean rates are illustrated as determined from dated rocks 
(circles a-a’),  dated changes (line b-b’)  and dated hiatuses (dashed line c-c’).  For an 
explanation of these three methods, refer to the text. 

 
 
Purely Random Models:  In the simplest purely stochastic models, each increment of deposition or 
erosion is independent.  The outcome in one time interval provides no information to improve the 
prediction of what will happen in the next.  Sadler and Strauss [4] describe a very simple coin-
tossing model that meets this criterion and can simulate surprisingly many aspects of accumulation 
rates:  on heads, deposit one increment; on tails, erode one increment.  But more insight results from 
modeling sediment accumulation as a one-dimensional Brownian walk [22] because these walks 
have been explored at length in fractal mathematics.   
 
To model sediment accumulation as a Brownian walk, represent the time series of net sediment 
accumulation by the sum of a succession of tiny independent increments of deposition or erosion, 
selected at random from a normally distributed set of thicknesses.  When the mean of the distribution 
is zero, the model has a stochastic component but no trend:  one half of the distribution generates 
increments of deposition;  the other half generates erosion;  and selections from the two halves tend 
to balance exactly in a long run of random selections.  The succession of increments is called a 
“white noise” to distinguish it from the “walk” which is the history of their running total.  Setting the 
mean greater than zero ensures long-term net accumulation, because more than half of the 
distribution will generate deposition; this is equivalent to adding a positive trend component to each 
increment.  A Brownian walk without a trend component generates a negative power law with a 
slope of -0.5.  Inclusion of a positive trend (Fig. 8) causes the negative slope to decrease at long time 
spans and approach the steady rate (zero slope) of the trend component.   
 
We can use the relationship between fractal dimension and the slope of the power law developed for 
the Cantor Bar (Eq. 2).  It implies that a stratigraphic time line that represents those sediment 
increments which escape erosion in the Brownian model will have a fractal dimension (d) of 0.5.  
The value of one half reflects the fact that the divergence of a Brownian walk from its starting 



 
30 On the Determination of Sediment Accumulation Rates 

 

elevation scales with the square root of its duration.  In a more general formulation, the exponent H 
describes how the elevation change ( h) between two points on a self-affine fractal walk scales with 

 thei separa n in ti e [19: ct. 9.5

   (3) 
ivid both s es by t  obtai the sca

(H-1) 

 gradient of the power law which relates 

nd               r  =  Kt(1-D) .     (6) 

tions but by extracting 
undreds of thousands of measurements from repeated computer simulations. 

 make 
etter guesses about future changes;  accumulation is typically not a purely random process.   

rement of deposition is subsequently 
xactly eroded and a power law with a slope of  -1.0 emerges. 

t, r tio m se ; 9: sect. 7.3): 
 

            h  =  KtH .  
D e id  to n ling law for slope or rate: 
 

               r  =  Kt .     (4) 
 

The H exponent of a Brownian walk is 0.5.  The fractal dimension (D) of the walk itself must be 
greater than the dimension of the broken time line it generates;  it is a complex curve with a 
dimension between 1.00 and 2.00.  The value of D for Brownian motion is 1.5.  The sum of H and D 
is 2.0 for any fractal time series.  This standard relationship that may be reorganized (Eq. 5) and 
combined with equation 4.  The result (Eq. 6) shows that the
rate to time span must be 1-D for the accumulation history: 
 

     (H - 1)  =  (1 - D)     (5) 
 

a
 
 

The reader will easily discover many more basic properties of random walks in the mathematical 
literature.  But we must take care to extract the geologically appropriate ones.  For example, 
mathematicians convert a Brownian walk (D = 1.5) to a Levy dust (d = 0.5) by considering only the 
points at which the stochastic component of the walk would intersect a fixed elevation value.  This 
has the appearance of deriving a time-line from an accumulation history;  but we need a different 
“dust”  --  the one created by considering all the points that are ultimately recorded by preserved 
sediment (Fig. 3e) [4].  Strauss and Sadler [23] solved this problem numerically.  Because the 
mathematics can be quite daunting,  figure 8 was not prepared from their equa
h
 
Random Models with Memory:  Textbooks on fractals also discuss “fractional” Brownian motions 
[19: sect. 9.5;  21: sect. 1.9;  9: sect. 7.2).  Such walks possess a degree of positive or negative 
correlation between increments.  This property is more colloquially called feed-back or memory.  It 
means that the accumulation history in any one time interval provides some information with which 
to improve the guess about what will happen in the next interval.  This has obvious appeal for 
models of sediment accumulation.  At some time scales, depositional features like channels, levees, 
fan lobes, and reefs tend to be stationary and encourage the persistence of accumulation in the same 
place.  At longer time scales the very build-up of sediment encourages a shift to new locations, a 
negative persistence.  With knowledge of the prior history of accumulation, we often can
b
 
Positive correlation (persistence) reinforces change and causes the time series to diverge from its 
initial elevation faster than Brownian motion;  that is, the H exponent will be greater than 0.5 and the 
dimension D will be correspondingly less than 1.5.  Negative correlation has a damping effect upon 
divergence and implies H less than 0.5 and D greater than 1.5.  It is possible to run computer 
simulations with this wider range of H values and examine the resultant plots of rate and time span.  
The programming is more complex than for Brownian walks and the exercise is really not necessary.  
Enough relationships have already been derived between the fractal dimension of the stratigraphic 
time line (d),  the H exponent of the time series, and the slope of the negative power law to allow the 
results to be anticipated.  Models with positive correlation must generate power law slopes less steep 
than -0.5.  In the extreme case, correlation is perfect, accumulation is steady and the slope of the 
power law (1-D)is zero (D = 1.0 and H = 1.0).  Negative feedback leads to steeper negative slopes.  
In the extreme case of perfect negative correlation, every inc
e
 
It is worth sounding a warning at this point that the profusion of named patterns and exponents for 
fractals can be confusing.  The relationships reported here for H, can be found with H represented as 
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the Hurst exponent [19: sect 9.5] or the Hausdorff measure [9: sect. 7.1].  Probably because Hurst’s 
exponent is more straightforward to calculate, it is a popular substitute for H.  Turcotte [9: sect 7.6] 
relates the Hurst component as a property of the fractional noise to the Hausdorff measure as a 
property of the walk produced as a running sum of that noise.  But the message of the previous 
paragraph remains straightforward:  there is a very simple arithmetic relationship between the slope 

f the power law and the persistence of the accumulation process. 

rrigenous deposits.  The second concerns the rate of accretion of chemical 
eposits in the deep seas. 

ernary sediment accumulation adjacent to high 
ountains, compared to earlier Cenozoic epochs.  

ernary rates will exceed the Neogene rates which, in turn will 
e faster than the Paleogene values.   

een climate and relief.  It also necessary to remove the 
me-scale effects from the rate data [15]. 

crusts is certainly more persistent 
t abyssal depths than in shelf seas,  it is not necessarily less rapid. 

o
 
 
Failures to Appreciate the Role of Time Scale 
Two examples illustrate the pitfalls of ignoring the dependence of rate upon time span.  The first 
concerns tectonism and te
d
 
Molnar and England have offered a physical explanation for the “illusion of accelerated uplift of 
mountain ranges” in Late Cenozoic times [12,13,14,15].  It had been popularly supposed that real 
tectonic uplift of the modern high plateaus and mountains, especially the Himalaya and Tibet, caused 
Quaternary climate change.  Molnar and England caution that climate change could, independently, 
have caused accelerated denudation rates;  the resulting changes in isostatic compensation would 
then quicken the creation of relief without real tectonic uplift.  Much older changes in crustal 
thickness would be the ultimate cause of uplift.  Their argument carefully distinguishes tectonic 
uplift from increasing surface elevation and respects the time scales of isostatic adjustment.  But the 
fundamental time scale dependence of rate is ignored.  For example, one argument they advance for 
accelerated denudation is the high rate of Quat
m
 
Whether or not they are related, the Late Cenozoic accelerations claimed for accumulation rates and 
the creation of relief are both largely illusory because unequal time spans have been compared;  and 
because it is reasonable to suppose that both accumulation and uplift are discontinuous.  The 
Quaternary spans only 2 million years,  the preceding Neogene 23 million years and the Paleogene 
42 million years [16].  Even the individual epochs show a moderate positive association of duration 
and age.  Thus, even if the pattern of unsteadiness is stationary, we must expect, from consideration 
of time span alone, that average Quat
b
 
England and Molnar [15] are “unable to suggest a physical mechanism” to explain why rates scale 
with time span;  quite so, it is a purely mathematical consequence of trying to describe an unsteady 
processes by its net rate of work.  Proper analysis of the uplift of the Tibetan plateau certainly needs 
attention to the two-way interactions betw
ti
 
Marine manganese nodules and crusts accumulate on deep ocean floors and beneath shallow shelf 
seas.  Although it has been widely supposed that the deep marine nodules grow much more slowly 
than their shallow-water counterparts, the data do not unequivocally support this simple view [17].  
Rates of growth determined from shallow water samples do exceed those typically calculated for 
abyssal samples by several orders of magnitude (Fig. 6).  But, growth rates in shallow water have 
been determined for time spans that are generally much shorter than the minimum resolution of 
dated intervals in the abyssal nodules.  Furthermore, deep water manganese nodules are known to 
accrete unsteadily:  the concentrically zoned nodules include surfaces of hiatus and there is evidence 
of short term growth spurts that exceed the limits of radiometric rate determination [18].  The 
available data from all depths can be approximated by a single power law.  This permits the view 
that growth rates in shallow marine nodules might closely resemble the short-term growth of the 
abyssal nodules and crusts.  The growth of manganese nodules and 
a
 
 



 
32 On the Determination of Sediment Accumulation Rates 

 

 
Table 3  Properties of Dated Horizons as a Function of Dating Technique 
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levels (e.g. monitoring an active depositional system) behave differently in this regard 
able 3). 

hic rate determinations potentially average across more hiatuses than radiometric 
eterminations.   

 
Dating Techniques 
In the numerical models, the scaling law for accumulation rate has a simple geometric counterpart:  
the relationship between the slope and length of chords drawn between pairs of points on the time 
series.  But we must take care to sample chord ends in a geologically realistic fashion.  Because of 
erosion, many segments of the time series are not recorded by sediment in the final deposit.  This 
section of the paper shows that the dating technique determines which
s
 
When a rate of accumulation is determined from the thickness of sediment between two horizons of 
known age in a sedimentary deposit, it will almost inevitably include some intervening intervals of 
hiatus.  We now ask whether the known ages at the end of the dated interval might themselves fall 
within a hiatus.  The answer varies with the dating technique.  Dated deposits (e.g. radiometric 
dates), dated changes (e.g. magnetic polarity reversals), dated hiatuses (e.g. sequence boundaries), 
and dated 
(T
 
Radiometric methods can date deposits directly;  the ends of an interval that is dated by two 
radiometrically age determinations must be anchored in depositional increments.  Hiatuses may 
occur only within such a radiometrically dated interval,  not at the ends.  More often, however, rates 
are calculated between horizons that have been “dated” by recognizing changes in fauna, changes in 
magnetic polarity, or changes in isotopic composition for which the age has been calibrated 
elsewhere.  These changes are recorded as a contrast between deposits “before-and-after” the event.  
The known age of the event is placed between two contrasting sediment samples or fossil faunas and 
may, therefore,  fall within either a hiatus or a rock interval.  Thus, biostratigraphic and 
magnetostratigrap
d
 
Sequence stratigraphic techniques are more extreme in this regard; they deliberately assign ages to 
surfaces believed to be hiatuses and use these surfaces to delimit correlative units.  When a rate is 
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determined from the thickness of rock between two sequence-bounding surfaces of hiatus, and these 
surfaces are prominent of seismic cross sections, it is likely that  that both ends of the dated interval 

ill lie within a significant hiatus.  

ord the coordinates of points that lie on the accumulation history but not on the 

 

ple anywhere on the accumulation history;  it can represent the 
taircase risers, but not the treads. 

 

      

w
 
The elevation-age coordinates of radiometrically dated samples from a stratigraphic section must lie 
on both the staircase plot of preserved deposits (Fig. 1b) and the original accumulation history (Fig. 
1a).  Of course, radiometric ages include an unsystemmatic error and may be plotted as bars, rather 
than points, to represent a two-standard-deviation or 95% confidence interval about the mean age;  
but the staircase plot and accumulation history curves must still pass through these bars.  In contrast, 
the elevation-age coordinates of dated changes and dated hiatuses lie on the staircase plot but not 
necessarily on the accumulation history.  The relationship is reversed when active deposition is 
monitored:  a sedimentologist may record the level of the sediment-fluid interface at any time, 
whether or not sediment at that surface is ultimately preserved.  During periods of net erosion, these 
dated levels rec
staircase plot.   

                          
 

mulation.  Values of 
critical parameters for these two models are shown on figures 7 and 8. 

Figure 9.  Comparison of mean accumulation rates from levels dated during deposition 
(trains of circles a-a’ and d-d’;  i.e. real time sedimentologic observation)  and horizons 
dated in the final deposit (zones b-b’ and c-c’;  i.e.  subsequent stratigraphic sampling).  
Curves a-a’ and b-b’ sample a sine wave model of periodic accumulation.  Curves c-c’ and 
d-d’ were compiled from a Brownian motion model of episodic accu

 
What are the consequences of mixing these different dating techniques in one plot of rate against 
time span?  To answer this, the numerical models presented above were sampled according to four 
different protocols:  1) dated horizons may not lie in a hiatus (e.g. the dated rocks of radiometric 
techniques);  2) dated horizons must lie in a hiatus (e.g. sequence stratigraphy);  3)  dated horizons 
may lie in a hiatus or a sediment increment (e.g. biostratigraphy, magnetostratigraphy, and isotope 
stratigraphy); and 4) dated “horizons” must record the level of the sediment surface before any 
subsequent erosion (e.g. surveyed levels).  The first and second protocols are precluded from dating 
the treads and risers of the staircase plot respectively.  The third protocol can sample anywhere on 
the staircase.  The fourth can sam
s
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Obviously, the four sampling protocols cannot be expected to produce significantly different rates 
except for time scales at which hiatuses are prevalent.  The Brownian Walk model of random, 
episodic sedimentation generates hiatuses at all time scales (Figs. 8, 9).  All the dating protocols 
reproduce the -0.5 slope in the regression of rate upon time span that was predicted by theory for a 
thoroughly random process [22].  The rates calculated from radiometrically dated deposits are 
systematically 1.5 to 2.0 times faster than those determined from protocols that may sample within a 

iatus.   

radiometric dating of despots to produce a few 
te estimates that lie on the steep middle segment. 

e span of the sediment 
crement that survives erosion can be much shorter. 

 ”matured” [23], in the sense that it may now be representative of older units of the same time 
pan.  

example of marine Holocene deposits on passive continental margins.  The Holocene typically

h
 
The sine-wave model of periodic sedimentation produces regularly spaced surfaces of hiatus that all 
share the same time scale.  Dated changes and dated hiatuses produce approximately the same 
estimates of rate for this model (Figs. 7, 9).  In Figure 7, radiometrically dated deposits appear to 
produce a different relationship for rate and time span because this technique has failed to generate 
any rates at the time scale of the hiatuses;  curve a-a’ in Figure 7 reproduces the same near horizontal 
outer segments of the rate-to-timespan relationship that were recovered by dating changes and 
hiatuses (Fig. 7b and 7c);  but curve a-a’ lacks points on the steep middle segment.  This gap results 
because the simple sine wave model generates a train of absolutely identical hiatuses.  Less 
simplistic models would include additional periodic components or a stochastic component which 
would eliminate such strict regularity and allow even 
ra
 
Where accumulation rates are determined by direct observation during deposition, however, the 
models suggest that the relationship of rate to time span (Fig. 9) may depart significantly from 
stratigraphically determined rates.  This departure will be most marked where accumulation is 
characterized by regular cycles in which a large fraction of the depositional phase is eroded  --   a 
situation which results if the amplitude of the cycles is more than twice the net subsidence achieved 
in a single cycle period.  The sine-wave model in Figures 7 and 9 created such a condition because 
the wave amplitude was set very large relative to the trend component.  The rates determined by 
direct observation of the depositional process differ from those measurable in the stratigraphic 
section in two respects.  First, direct observation records higher rates because the steepest part of the 
sine wave is in the mid-section of the accumulation phase; this portion is lost if erosion removes 
more than half of the deposit of each cycle.  Second, direct observation records high rates into longer 
time spans.  The depositional phase lasts for half the wave period;  but the tim
in
 
Even if all rates are determined by dating horizons in a deposit rather than monitoring the active 
depositional surface, it is still possible that the deposit is too young to be representative of the 
eventual stratigraphic record [23].  Rates measured before the deposit has aged beyond the return 
period of the dominant erosional events, do not capture the impact of those events;  so they may not 
be representative of similar time spans in older deposits.  If a deposit is older than the return time of 
the erosional events that determine the stratigraphic architecture, then the deposit may be considered 
to have
s
 
The previous paragraph cautions that the age and the time span of the measured deposit need to be 
considered when selecting accumulation rates to model the stratigraphic record.  Consider the 
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presents the deposits of a single incomplete marine accommodation cycle,  one that has yet to pass 
from a phase of rising sea-level to a phase of falling sea level and become susceptible to exposure 
and possible erosional losses.  Thus, monitoring Holocene accumulation may lead to estimates of 
accumulation rates on the scale of ten thousand years that are too high to be representative of the 
corresponding preserved stratigraphic record.  The Holocene values may be always be used in 
models that require the potential accumulation rates.  Whether or not they represent the net rates of 
accumulation after low stands of sea level have exposed sediment surface depends upon the ease 
with which the sediment may be eroded during falling sea level.  Obviously, erosion very rarely 
allows the sediment surface to track the falling sea level closely;  usually, the coastline shifts and 
sedimentary facies change because erosion and accumulation lag behind the destruction and creation 
of accommodation space.   
 

 

 
 

Figure 10.  Constraints on the staircase plot for the Barstow Formation, Miocene, southern 
California.  Solid black squares and rectangles are radiometrically dated rocks;  heavy 
open squares and rectangles are paleomagnetically dated levels.  The width of the 
rectangles represents ambiguity in the magnetostratigraphy or multiple radiometric age 
determinations.  Stippled rectangles are the limits of possible paths of the staircase plot. 

 
 
 

A Single Stratigraphic Section 
Studies of the type section of the Barstovian Land Mammal Age of North America [24,25] have 
applied both paleomagnetic and radiometric techniques to date horizons in a single depositional 
succession (Table 4).  Because the stratigraphic section is built of lacustrine and alluvial sediments, 
which include mudstones, sandstones and coarse conglomerates, it is evident that the flow power of 
some depositional events would have been adequate to erode previously deposited sediments.  Some 
of the hiatuses marked by bedding surfaces in the section may reasonably be expected to include 
intervals of erosion.  Thus, the section worth examining for differences in the measured 
accumulation rates that may reflect the dating techniques.  And it is a good example to illustrate the 
difference between the accumulation history and the stratigraphic staircase plot.   
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Table 4  Dated levels in the Barstow Formation 

 
LEVEL (METERS 
ABOVE BASE ) 

RADIOMETRIC 
AGE  (MYR) 

PALEOMAG. 
AGE (MYR) 

ALTERNATIVE 
PALEOMAG. 

 

DATED EVENT 

1000 13.4   Lapilli tuff 
985  13.51  C5ABr 
965  13.7  C5ABr 
902 14   Hemicyon tuff 
845  14.61  C5ADr 
828 14.8   Dated tuff 
822  14.8  C5ADr 
808  14.89  C5Bn.1r 
790  15.03  C5Bn.1r 
708  15.16  C5Br 
701 15.27   Valley View tuff 
520 15.84   Oreodont tuff 
472  16.01  C5Br 
430  16.29 16.1 ?C5Cn.2r 
401  16.33 16.2 ?C5Cn.2r 
342  16.49 16.29 ?C5Cn.2r 
300  16.56 16.33 ?C5Cn.2r 
245 16.3   Rak tuff 
245 16.56   Rak tuff 
233  16.73 16.49 ?C5Cr 
70  17.28 16.56 ?C5Cr 
50 19.3   Red tuff 
38  20.13  C6r 

 
All the dated horizons in the type Barstovian section serve to constrain the location of the staircase 
plot (Fig. 10).  The degrees of freedom to interpret the true staircase plot are given in figure 10 by a 
chain of small dashed rectangles which meet at the dated horizons.  If there is no ambiguity in the 
age of a horizon, the lower left corner of each rectangle touches the upper right corner of the next.  
Otherwise, the upper and lower edges overlap. 
 
The accumulation history curve is significantly less well constrained than the staircase plot for any 
ancient stratigraphic section.  As explained when the different graphics were introduced, the 
staircase plot and the coordinates of dated horizons tend to identify the lower bound on the 
accumulation history curve (Fig. 11).  Of course, the curve must pass through the elevation/age 
coordinates of the radiometrically dated horizons.  But the paleomagnetically dated changes might 
lie at a hiatus.  In other words, they might lie on a horizontal tread of the staircase plot and the tread 
may extend to the left and right of the paleomagnetic age.  If so, the accumulation history curve need 
not pass through these “dated” coordinates;  it is free to ascend to the left of the dated point, pass 
through a maximum, and then descend to the right of the dated point;  the descent must end in a 
minimum at the level of the dated change.  Such maxima, skirting over the dated changes represent 
temporary deposition followed by erosion (see Fig. 3b);  they are the asymmetrical portions of the 
accumulation history that depict hiatuses and are missing from the staircase plots.   

 
Figure 11 attempts to place upper limits on the size of the missing maxima and, thus, place an upper 
bound on the accumulation history.  The missing maxima appear as a set of dashed gothic arches
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Figure 11.  Constraints on the accumulation history of the Barstow Formation.  Black 
rectangles: radiometrically dated rocks;  open rectangles:  paleomagnetically dated 
levels;  Dashed arches: limits of possible paths of the accumulation history curve, which 
must pass through the dated tuffs, but may include a hiatus in the intervals of 
paleomagnetic reversal. 

 
 

over the dated coordinates of paleomagnetic events.  The critical task is to determine the highest 
credible arch.  Two types of information constrain the answer:  the width of the arch must be 
consistent with the neighboring dated coordinates up and down section;  and the steepness of the 
arch must represent credible accumulation rates.  Let us consider accumulation rates first. 

 

 
We have seen that accumulation rate can be immeasurably high in the very short term;  so the 
beginning of each arch can be almost vertical.  But very high rates are not sustained for long 
intervals;  rate scales inversely with time span and the steepness of the arch must decrease upward.  
Remember that the arch is not the accumulation history curve, it is its upper bound.  Although short 
intervals of rapid accumulation can occur at any time,  the arch is attempting to draw the upper limit 
of all reasonable curves.  Thus, its form is guided by the maximum sustainable rates as a function of 
time span since the beginning of the arch. 
 
As a guide to the rate of decrease in the steepness of the side of he arch, I used the accumulation 
rates determined in the same section.  Because the scales in figure 11 are not logarithmic, the power 
laws lead to the progressively flattening curve.  For lack of any specific information on erosion rates, 
I made the descending sides of the arches symmetrical with the ascending sides.  Using local field 
relationships, Friend and others have drawn accumulation histories [26: Fig. 1e, 3e] in which the 
erosional side of the arches are very steep and the tops flat.  Again, the arches here are not a
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guess at the corresponding segment of the real accumulation history but an attempt to place an upper 
envelope around all reasonable guesses.  The flat-topped curves drawn by Friend and others fit 
inside the arches drawn in figure 11. 
 
The width that each arch can attain is determined by the age and elevation of neighboring dated 
horizons in the section.  Closely spaced dated horizons force the arches to be relatively narrow and 
this, in turn, limits the height that the arches can reach.  The accumulation history must either pass 
through a magnetostratigraphic coordinate, or execute a minimum before the next dated horizon.  
Thus, even though the elevation-time coordinates of dated changes need not lie on the accumulation 
history,  the upper limit of the curve is better constrained where a closely spaced succession of 
changes has been dated.   

 
Figure 12.  Rates of accumulation in the Barstow Formation determined by radiometric 
dating (open circles) and magnetostratigraphy (filled circles).  These are compared with 
the trend of mean rates for fluvial and alluvial deposits (solid curve) based upon 12,338 
empirical determinations. 

 
 

 
The regression of rate upon time span is difficult to determine reliably for the type Barstovian 
section alone because available data span only two and a half orders of magnitude in time span.  
Visual inspection of Figure 12 reveals that the mean slope of a regression through the available data 
is likely to be negative and less steep than -0.5 overall.  The slope of maximum rates steepens 
appreciably at time scales longer than 2 million years.  We should guess that accumulation was 
characterized by positive feedback in depositional phases that lasted up to 2 million years.  At longer 
time scales hiatuses are likely more prevalent than a random walk would predict and the section is 
significantly less complete than at shorter time scales.  There is considerable overlap between the 
rates determined by radiometric and paleomagnetic techniques, but the maximum rate, at a given 
time scale, is typically determined by radiometry.  If not the result of pure chance, this observation 
implies that a significant number of the paleomagnetic reversals take place across hiatuses in the 
type section. 
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Conclusions 
Sediment accumulation must be acknowledged to be potentially unsteady and discontinuous at all 
sedimentologically and stratigraphically significant time scales.  For this reason, it is safest to regard 
sediment accumulation as a fractal phenomenon and expect that accumulation rates will be a strong 
negative function of time scale.  Large empirical compilations reveal that negative power laws relate 
rate to time span as would be expected for a fractal time series.   
 
The steepness of the negative power laws means that much more of the variance in empirical 
accumulation rates can be explained by the length of the time interval of measurement than any other 
single factor, including environment of deposition or geologic age.  The slope of the power law does 
vary with depositional environment and time span.  The latter observation means that hiatuses are 
more prevalent at some time scales than others;  steeper portions of the negative power laws indicate 
that a relatively higher fraction of time is apportioned to hiatuses at these time scales than at time 
scales for which the negative slope is less steep.  In shallow marine deposits, a steepening of the 
negative power law indicates that hiatuses are more prevalent at time scales of tens to hundreds of 
thousands of years than at shorter or longer time scales.  This may reflect the influence of 
Milankovitch-scale fluctuations in sea level and the prevalence of meter-scale accommodation 
cycles. 
 
A purely stochastic accumulation process would lead to a negative power law with a slope of -0.5.  
The discovery of slopes that are both steeper and gentler than -0.5 means that both positive and 
negative feedback characterizes the process of sediment accumulation.  In general, positive feed 
back is more likely at longer time spans.  At time spans longer than a few hundred thousand years 
the differences in accumulation rate that might be attributed to depositional environment are 
relatively small.  These observations are consistent with the surmise that lithospheric subsidence 
becomes the critical determinant of sediment accommodation at time scales longer than a hundred 
thousand years.  At time scales shorter than a few thousand years, sediment supply and depositional 
process more likely determine accumulation rate.  The dramatic fall in shallow-marine sedimentation 
rates at time scales of tens of thousands to hundreds of thousands of years has already been 
attributed to the dominance of the eustatic component of sediment accommodation at these 
intermediate time scales.  
 
Where sediment accumulation rates are calculated from pairs of datum levels, hiatuses influence the 
results in two ways:  
 
1)  Hiatuses that lie between the two datum levels cause the average accumulation rate to 
underestimate the sedimentation rate in the intervals between hiatuses.  As datum levels become 
more widely spaced the calculated rates are likely to include more and larger hiatuses.  This explains 
the negative regression of measured rate upon time span, from which some information may be 
extracted concerning the size and spacing of hiatuses.  Because the negative slopes of the regression 
persist to time spans of at least a hundred million years,  we must assume that hiatuses are likely at 
all time scales up to tens of millions of years. 
 
2)  A datum level that lies at a surface of erosional hiatus may yield a false elevation-time coordinate 
in the sense that it does not lie on the true accumulation history.   This is a problem for dated 
changes (e.g. paleomagnetic reversals, biostratigraphic zone boundaries) and dated hiatuses (e.g. 
sequence boundaries), but not for dated deposits (e.g. ash beds).  Comparison of rates determined by 
different techniques, therefore, offers further insight on the distribution of hiatuses.  On the other 
hand, caution must be exercised when combining rates determined from the stratigraphic record with 
rates determined by monitoring an active depositional system.  The monitoring process can 
determine rates that characterize phases of temporary deposition;  i.e. deposits which are 
subsequently eroded and are, therefore, not necessarily representative of the longer term stratigraphic 
record.   
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