STRATIGRAPHY, SEDIMENTARY STRUCTURES, AND TEXTURES OF THE LATE NEOPROTEROZOIC DOUSHANTUO CAP CARBONATE IN SOUTH CHINA

GANQING JIANG, 1 MARTIN J. KENNEDY, 2 NICHOLAS CHRISTIE-BLICK, 3 HUAICHUN WU, 4 AND SHIHONG ZHANG 5
1 Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154-4010, U.S.A.
2 Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A.
3 Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964-8000, U.S.A.
4 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
e-mail: jiangg@unlv.nevada.edu

ABSTRACT: The 3- to 5-m-thick Doushantuo cap carbonate in south China overlies the glaciogenic Nantuo Formation (ca. 635 Ma) and consists of laterally persistent, thinly laminated and normally graded dolomite and limestone indicative of relatively deep-water deposition, most likely below storm wave base. The basal portion of this carbonate contains a distinctive suite of closely associated tepee-like structures, stromatactis-like cavities, layer-parallel sheet cracks, and cemented breccias. The cores of tepees are composed of stacked cavities lined by cements and brecciated host dolomicroite. Onlap by laminated sediment indicates synsedimentary disruption of bedding that resulted in a positive seafloor expression. Cavities and sheet cracks contain internal sediments, and they are lined by originally aragonite isopachous botryoidal cements with acicular radiating needles, now replaced by dolomite and silica. Pyrite and barite are common, and calcite is locally retained as a primary mineral. These features share morphological and petrographic attributes with modern and ancient methane seeps in which methane gas and fluids provide both a force for physical disruption from buoyancy and a source of alkalinity for significant cementation. The presence of δ13C values as low as −41% in well preserved limestone crusts and cements within and immediately above the tepee-like structures provides unequivocal evidence for methane influence, and the widespread distribution of identical sedimentary structures and paragenetic cement sequences across the entire basin at the same basal cap carbonate level is consistent with gas hydrate destabilization and the development of methane seeps as a result of postglacial warming of the ocean. Considering the broad distribution of similar features at the same stratigraphic level in other cap carbonates globally, we suggest that the late Neoproterozoic postglacial methane release may have influenced the oceanic oxygen level as well as contributed to postglacial warming via the greenhouse effects of methane.

INTRODUCTION

One of the most puzzling phenomena of the late Neoproterozoic from ∼ 750 Ma to 543 Ma is the global occurrence of thin “cap carbonates” that in many places directly overlie glacial deposits and produce unusual carbon isotope values from +1% to −9% (e.g., Kennedy 1996; Kaufman et al. 1997; Hoffman et al. 1998; Kennedy et al. 1998; James et al. 2001; Kennedy et al. 2001; Hoffman and Schrag 2002; Leather et al. 2002; Jiang et al. 2003a; Nogueira et al. 2003; de Alvarenga et al. 2004; Halverson et al. 2004; Porter et al. 2004; Xiao et al. 2004; Zhou et al. 2004), with a few examples yielding δ13C values as low as −10% (Xiao et al. 2004; Halverson et al. 2004) to −41% (Jiang et al. 2003a). The origin of these deposits remains controversial, with three ideas dominating current thinking: (1) the snowball Earth hypothesis, in which the cap carbonate represents the transfer of CO2 from the atmospheric to the sedimentary reservoir via silicate and carbonate weathering (Hoffman et al. 1998; Hoffman and Schrag 2002; Higgins and Schrag 2003); (2) the upwelling model, in which physical stratification produces a strong surface-to-deep carbon isotope gradient in the ocean, and postglacial upwelling or flooding delivers alkalinity-rich deep water to continental shelves and interior basins, resulting in carbonate precipitation (Grotzinger and Knoll 1995; Knoll et al. 1996; Kaufman et al. 1997; Ridgwell et al. 2003; Shields 2005); and (3) the methane hypothesis, in which the cap carbonates and associated isotopic anomaly are due to methane oxidation in a supersaturated ocean following a time of extreme cold (Kennedy et al. 2001; Jiang et al. 2003a).

Cap carbonates globally have three attributes: (1) a nearly universal distribution and relatively uniform thickness of 1 to 10 m over glacially related sediments, (2) a comparable negative carbon isotope signature (with δ13C values that decline to < −5%) at widely separated locations, and (3) an unusual suite of sedimentary structures and textures, including tepee-like structures, stromatactis-like cavities, sheet cracks, cemented breccias, tube structures, and barite fans, which are sporadically distributed in almost all documented cap carbonates (e.g., Deynoux et al. 1976; Plummer 1978; Williams 1979; Walter and Bauld 1983; Aitken 1991; Kennedy 1996; Kennedy et al. 1998; James et al. 2001; Kennedy et al. 2001; Hoffman and Schrag 2002; Leather et al. 2002; Jiang et al. 2003a; Nogueira et al. 2003; de Alvarenga et al. 2004; Halverson et al. 2004; Porter et al. 2004; Xiao et al. 2004; Zhou et al. 2004). Most discussions have focused on the overall distribution and carbon isotope characteristics of the carbonates, which have been taken to imply a major chemical oceanographic event in the aftermath of glaciation. Rather less attention has been paid to the processes...
responsible for the unusual sedimentary structures and textures (e.g., Kennedy 1996; James et al. 2001; Jiang et al. 2003a; Nogueira et al. 2003; Allen and Hoffman 2005; Gammon et al. 2005), although the appearance of these features has been mentioned in every recent publication related to the cap carbonates, underscoring their universality in these deposits.

Early interpretations ascribed the tepee-like structures in the Nuccaleena Formation of South Australia to supratidal processes (e.g., Plummer 1978; Williams 1979), although a relatively deep-water origin for these and most other cap carbonates is now widely accepted (Kennedy 1996; Hoffman and Schrag 2000). Sheet cracks and tubes observed in the Noonday Dolomite of eastern California and in the Bildah Formation of southern Namibia were suggested to be gas-escape features (Cloud et al. 1974; Hegenberger 1987), possibly caused by CO$_2$ release from photosynthetic mats. Other interpretations suggested for tepee-like structures in cap carbonates include (1) syndepositional deformation and cementation (e.g., Kennedy 1996; Nogueira et al. 2003; James et al. 2001); (2) seismicity-related deformation (e.g., Jiang et al. 2003a; Allen and Hoffman 2005); (3) giant wave ripples; (4) seafloor dolomite cementation during early diagenesis (e.g., Plummer 1978; Gammon et al. 2005; Shields 2005). While these mechanisms may account for specific features in cap carbonates at individual locations, none accounts for the full suite of structures and textures involving synsedimentary buckling and cementation, their broad distribution, and stratigraphic restriction within the lower portion of all cap carbonates.

In contrast, Kennedy et al. (2001) and Jiang et al. (2003a) proposed that the tepee-like structures, sheet cracks, tube structures, barite fans, negative carbon isotope values, and associated cavities in Australia, Namibia, eastern California, and south China were caused by escape of gas and fluid associated with gas-hydrate destabilization triggered by marine transgression and warming after a time of extreme cold. Methane gas liberated from hydrates resulted in localized deformational features around seep pathways, and microbial oxidation led to the precipitation of secondary carbonates.

No detailed documentation of the temporal and spatial variation of these sedimentary structures and textures is currently available at a basin scale, but such data are important for understanding the origin and significance of these features and their role in cap-carbonate deposition in general. The Doushantuo cap carbonate overlying the glaciogenic Nantuo Formation in south China is one of the best preserved Marinoan-age cap carbonates (Jiang et al. 2003a; Zhou et al. 2004) and is traceable with consistent lithology and internal stratigraphy for at least 350 km in platform-to-basin transects (Figs. 1, 2). The purpose of this article is to document and interpret the stratigraphy and sedimentary features of this cap carbonate and to discuss implications for alternative postglacial paleoceanographic models.

GEOLOGICAL BACKGROUND

Tectonic History

A Neoproterozoic rifted continental margin is inferred to have developed along the southeastern side of the Yangtze block after about 800 Ma (Fig. 1; Wang et al. 1985; Liu et al. 1991; Li et al. 1999; Jiang et al. 2003b; Ling et al. 2003; Wang and Li 2003). The precise timing of the rift to post-rift transition is still debatable (Jiang et al. 2003b; Wang and Li 2003; Zheng 2003; Zheng et al. 2004) but is tentatively interpreted to
correspond with a level within or at the base of the lower glaciogenic unit (Fig. 2). A passive-margin setting has been inferred for postglacial carbonate rocks, on the basis of platform scale, comparatively simple physical stratigraphic and facies architecture, and the thickness of the succession, with no evidence for either syndepositional tectonism or significant igneous activity (Jiang et al. 2003b), although with unresolved questions about an apparent increase in the rate of subsidence in the latest Neoproterozoic (~ 550 Ma; Fig. 2A) and the lengthy span of time represented. Carbonate deposition continued through Cambrian to middle Ordovician time and ended with Silurian orogeny, during which the Neoproterozoic–lower Paleozoic strata were deformed (Liu et al. 1993). From the late Silurian to early Devonian, much of the South China Block (SCB) was exposed and subjected to weathering and erosion. Subsequent rifting and subsidence, beginning in the middle to late Devonian along the western to southwestern and southeastern sides of the SCB, led to the accumulation of shallow marine clastic and carbonate deposits of late Devonian to middle Triassic age (Wang et al. 1985; Liu et al. 1991; Liu et al. 1993). At the southeastern margin of the block, these units are composed of > 2 km of deep-marine turbidites and volcanic rocks; the nonmarine equivalent in the interior of the Yangtze block (Liantuo Formation in Hubei, Fig. 2A; and Qingshuijiang or Liangjiehe formations in Guizhou, Fig. 2B) is thin (~ 500 m). Ash beds within the upper part of the Banxi Group and Liantuo Formation yield U–Pb zircon ages of 758 ± 6 Ma and 748 ± 6 Ma (Ma et al. 1984; Zhao et al. 1985; Yin et al. 2003), respectively. Unconformably overlying these rocks are glacial sediments of the Chang’an Formation (Guicheng Formation in Hubei, Fig. 2A; Guiping and Ties’ai formations in Guizhou, Fig. 2B) is thin (< 500 m). Ash beds within the upper part of the Banxi Group and Liantuo Formation yield U–Pb zircon ages of 758 ± 23 Ma and 748 ± 12 Ma (Ma et al. 1984; Zhao et al. 1985; Yin et al. 2003), respectively. Unconformably overlying these rocks are glacial sediments of the Chang’an Formation (Guicheng Formation in Hubei, Fig. 2A; Guiping and Ties’ai formations in Guizhou, Fig. 2B; but see Zhou et al. 2004 for a different view), commonly interpreted to be of Sturtian age (~ 720 Ma). The Chang’an Formation is overlain by carbonaceous, manganese-bearing siltstone and shale of the Datangpo Formation. Patchy limestone and dolomite lenses and carbonate concretions present in the lower to middle Datangpo Formation have been plausibly regarded as the cap carbonate of the lower glacial diamictite (Zhou et al. 2001). A

Stratigraphy and Geochronology

The Neoproterozoic succession of the Yangtze block begins at the base with the Banxi and Xiajiang groups and their equivalents (Fig. 2; Wang et al. 1985; Qiao 1989; Liu et al. 1991; Liu et al. 1993). At the southeastern margin of the block, these units are composed of > 2 km of deep-marine turbidites and volcanic rocks; the nonmarine equivalent in the interior of the Yangtze block (Liantuo Formation in Hubei, Fig. 2A; and Qingshuijiang or Liangjiehe formations in Guizhou, Fig. 2B) is thin (< 500 m). Ash beds within the upper part of the Banxi Group and Liantuo Formation yield U–Pb zircon ages of 758 ± 23 Ma and 748 ± 12 Ma (Ma et al. 1984; Zhao et al. 1985; Yin et al. 2003), respectively. Unconformably overlying these rocks are glacial sediments of the Chang’an Formation (Guicheng Formation in Hubei, Fig. 2A; Guiping and Ties’ai formations in Guizhou, Fig. 2B; but see Zhou et al. 2004 for a different view), commonly interpreted to be of Sturtian age (~ 720 Ma). The Chang’an Formation is overlain by carbonaceous, manganese-bearing siltstone and shale of the Datangpo Formation. Patchy limestone and dolomite lenses and carbonate concretions present in the lower to middle Datangpo Formation have been plausibly regarded as the cap carbonate of the lower glacial diamictite (Zhou et al. 2001). A
Paleogeographic Constraints

Our paleogeographic reconstruction of a southeast-facing late Neoproterozoic Yangtze platform (Figs. 1, 2) is based on two lines of evidence. First, glaciogenic diamictic units underlying the Doushantuocap carbonate thickened in that direction (Fig. 2; Jiang et al. 2003b), from < 100 m in the shelf (sections 1–7 and 12–14; Fig. 2) to > 1000 m in the inferred basin (e.g., section 11, Fig. 2 and still farther south; Jiang et al. 1996). Second, the postglacial silicilastic-carbonate succession (Doushantuocap and Dengying formations) is characterized by clear evidence for a platform edge. In transect 1, an outer-platform stromatolite-rich shoal complex (cf. Jiang et al. 2003c) thins basinward and changes facies both basinward and into lagoonal deposits of the platform interior (sections 6 and 7 in Fig. 2A; Jiang et al. 2003b). A marginal shoal complex is less well defined in transect 2 (Fig. 2B), where stromatolite-bearing peritidal carbonates in the upper part of the Doushantuocap Formation and throughout the Dengying Formation suggest an open shelf. Slump blocks, olistostrome breccias, and turbidites are abundant in both units in sections 8 and 9 of transect 1 and section 15 of transect 2 (Fig. 2), and at other locations along the inferred platform margin (Fig. 1).

STRATIGRAPHY, SEDIMENTARY STRUCTURES, AND TEXTURES OF THE DOUSHANTUO CAP CARBONATE

Stratigraphy

The 3–5-m-thick cap carbonate forming the base of the Doushantuocap Formation contains three lithologically distinguishable but laterally variable carbonate units (Figs. 3–6; Jiang et al. 2003a): a basal strongly disrupted and cemented layer (C1), 1–1.9 m thick, a middle laminated layer, less than 2 m thick, with local tepee-like structures (C2), and an upper thinly laminated silty and shaly limestone and dolomite (C3), 1–2 m thick. The predominant lithology of these units is microcrystalline dolomite and dolomictite, with sparry calcite, dolomite, and quartz filling crosscutting fractures. Thin and laterally discontinuous (commonly < 5 cm) limestone (micrite) intervals are preserved only locally in platform sections (sections 1–7 in Figs. 1 and 2).

The contact with the underlying Nantuo Formation is a well-exposed, abrupt lithic change in all of the sections examined (Figs. 3–6). This contact was previously interpreted as a disconformity or sequence boundary (Wang et al. 1981; Wang et al. 1998), implying no genetic relation between the glacial event and deposition of the cap carbonate. Our more recent observations lead us to suspect a relatively continuous transition at the end of glaciation involving inundation of the terrigenous source and a switch from proximal glacial-marine sediments of the Nantuo Formation to distal hemipelagic sedimentation within the basal Doushantuocap Formation. Evidence includes (1) the presence in the basal 0.5 m of the carbonate of < 30% silicilastic components compositionally identical to the matrix of the underlying diamictite; and (2) the absence of evidence for subaerial exposure, channel incision, or nonmarine sedimentation at the contact, independent of paleogeographic location (Fig. 6). The cap carbonate is thus inferred to represent overall deepening of the depositional environment that presumably began during the glacial retreat responsible for deposition of the Nantuo Formation.

The basal carbonate unit (C1) is the most distinctive, consisting of clift-forming, buff- to yellow-weathering microcrystalline dolomite that is commonly brecciated and associated with cavities lined by multiple generations of fringing cements (Figs. 3–6). Localized limestone blocks are preserved locally in the platform sections (sections 1–5 in Figs. 1, 2), and they change both vertically and laterally into dolomitic limestone and dolomite. The abundance of bedding disruption, brecciation and cementation varies laterally over a few meters to hundreds of meters between the three end member types: (1) strongly disrupted and brecciated carbonate, with stromatolite-like cavities, tepee-like structures, sheet cracks, and cements accounting for < 30% of the bulk rock (see below); (2) less disrupted carbonate with < 10% composed of cements filling fractures and stromatolite-like cavities; and (3) undisrupted, laminated carbonate. Although localized, highly disrupted facies are present in most of the sections measured from the platform to basin. Comparable carbonates and cements have been observed in coeval cap carbonates in Australia (Kennedy 1996), Namibia (Hegenberger 1987; Kennedy et al. 2001), eastern California (Cloud et al. 1974), and Norway (Siedlecka and Roberts 1992).

The change from the basal unit (C1) to the overlying laminated dolomite unit (C2) is transitional, with a decrease of cavity-filling cements and an increase in the continuity of laminae. The basal layers of this unit are locally disrupted by tepee-like structures. Overlying laminated dolomites onlap and thin across the crests of these structures, which are inferred on this basis to have been topographic features at the seafloor. Unit C2 has been recognized in both platform and slope sections but not in inferred basinal sections where unit C1 is overlain directly by shaly dolomite (e.g., Fig. 4F, G).

Unit C2 is transitional to a thinly laminated, silty and shaly dolomite and limestone (unit C3). This unit is the most variable in both thickness and lithology. In platform facies of the Yangtze gorge area (Figs. 3, 4A, B), it is composed predominantly of peloidal dolopacks tone, dolowackestone, and dolomictite containing < 30% quartz silt, but with only minor shale. To the south in outer-shelf, slope, and basinal sections (Fig. 4C–G), it is characterized by shaly dolomite. In contrast, in the platform-to-slope transect in Guizhou (Fig. 5) this unit is indistinguishable from unit C2 in most places. The contact with the overlying black shale and limestone or dolomite (unit D) is transitional, with a gradual increase in shale. There is no evidence for erosion or subaerial exposure along this contact.
Sedimentary Structures and Textures

Particles and Lamination.—Microcrystalline dolomite and dolomicrite, the most pervasive phase of the Doushantuo cap carbonate (80% by volume), is composed of microcrystals from 5 to 25 μm in diameter and is characterized by dull to orange luminescence. Dolomite crystals ranging from 30 to 100 μm overgrow the groundmass, with some dolomite rhombs in the matrix, fractures, and cavities exceeding 500 μm.

The dolomicrite matrix surrounds ghosts of clots (0.2–2 mm) and peloids (50–200 μm). Indefinite margins (Fig. 7A, B) indicate partial recrystallization and progressive but incomplete replacement. Euhedral pyrite crystals from 10 to 50 μm in diameter dissimulate the matrix and form thin layers along bedding planes. Pyrite layers are more abundant in outer-shelf to basinal sections than in platform sections (Figs. 3–5).

Stromatactis-Like Cavities.—Stromatactis-like cavities are the most characteristic feature of the basal Doushantuo cap carbonate (unit C1 and lower C2). They are present in all sections in platform-to-basin transects (Figs. 3–5). Individual cavities vary from 0.5 to 5 cm across and are evident in scanning electron microscope (SEM) images of clots and peloids (Jiang et al. 2003a). Up to 30% of terrigenous quartz silt is present in the basal 0.5 m of the cap carbonate in all of the measured sections and within unit C3 in the platform sections (Figs. 3, 4A, B). The basal unit (C1) lacks obvious laminae, owing to recrystallization, bedding disruption, brecciation, and cementation. Only in the least disrupted regions are cryptic laminae 3–5 mm thick occasionally preserved in the form of normally graded peloids or quartz silt or sand particles. In contrast, parallel lamination (Fig. 7C) is common in units C2 to D, where it is expressed by carbonate laminae 1–10 mm thick separated by dark, pyrite-rich clay-rich drapes < 1 mm thick. Normally graded layers 1–3 mm thick, and consisting of faint clots and peloids (Fig. 7B), and quartz sand or silt, are present from the upper part of C2 to D in most sections measured (Figs. 3–5). In platform sections (e.g., Figs. 3A, B, 4A, 5A–C), asymmetric ripple cross-lamination (Fig. 7D) is present in units C3 and D. In slope to basinal sections (e.g., Fig. 4C, D), unit C3 and D contain corrugated dissolution surfaces at shale-dolomite contacts. Clay-rich drapes up to 1–4 cm thick filling depressions at these dissolution surfaces are onlapped by shale or dolomicrite laminae and are inferred to be of primary origin, similar to those described from the coeval cap carbonates in Australia (Kennedy 1996). Abundant pyrite grains are found along these surfaces.
lower surfaces and convex upper surfaces (e.g., Wallace 1987; Bourque
and Boulvain 1993; Hladil 2005), stromatolite-like cavities of the
Doushantu cap carbonate are characterized either by corrugated upper
and lower surfaces (Fig. 8A) or by a relatively flat upper surface
(Fig. 9A). The latter is similar to the “inverted stromatactoid” cavities
described by Peckmann et al. (2002) and Peckmann and Thiel (2004) from
modern and ancient methane seeps and the “gas blisters” in the Noonday
Dolomite (Cloud et al. 1974).

Well-preserved stromatolite-like cavities are commonly filled with the
following components (e.g., Fig. 9A–C): (1) internal sediment (IS)
composed of microcrystalline dolomite and fine-grained quartz silt;
(2) isopachous botryoidal cements (IB) consisting of aggregates of very
fine acicular needles (1–5 um) that form either botryoids with 0.4–1.5 mm
radius or thin (0.1–0.5 mm) layers; and (3) equant calcite (EC) and
dolospar (ED). The splayed or bladed crystal terminations of isopachous
botryoidal cements (Fig. 9B, C) are characteristic of aragonite (e.g.,
Sandberg 1985; James and Choquette 1990; Tucker et al. 1990; Savard et
al. 1996). In some cases, isopachous columnar fibrous cements (IC)
nucleate directly on dolomitic matrix, with individual crystal fans up to
2 cm across (Fig. 9D), similar in shape and crystal termination to the
radial fibrous calcites described by Kendall and Tucker (1973) and
Kendall (1985) from Paleozoic reefs and mud mounds.

Internal sediments both overlie isopachous cement and are overlain by
isopachous botryoidal cement fringes. The interbedding of cavity-lining
cement and internal sediment requires that these features formed when
the cavities were open to the seafloor and sediments could be washed in,
and they remained open long enough to be filled by cavity-lining cements
(Fig. 9).

Most stromatolite-like cavities are now filled with silica, or secondary
carbonate composed of baroque dolomite or sparry calcite. Carbonate
textures within pervasively silicified cavity fills are no longer preserved.
Silica-filled cavities are commonly connected by quartz-filled crosscutting
veins, suggesting that silicification occurred during a later phase of
diagenesis. This is consistent with the association of baroque dolomite
(e.g., Moore 1989) and the depleted δ18O values in both silica (≤ –15‰,
PDB; Chu Xuelei, personal communication 2005) and calcite and
Fig. 5.—Representative sections of the Doushantuo cap carbonate from platform-to-slope settings in transect 2 (Fig. 2B). See Figures 1 and 2 for location of sections and Figure 3 for legends.

Fig. 6.—Sharp contact between the Doushantuo cap carbonate and the underlying glaciogenic Nantuo Formation (NT), and cap carbonate stratigraphy. A) From Liantuo section (Fig. 3B) in interpreted platform setting; B) from Tianping section (Fig. 4D) in interpreted slope setting. Units C1 to D are the same as those in Figures 3B and 4D.
dolomite spars (e.g., points 19 and 20 in Fig. 10; $\delta^{18}O$ values $\leq -14\%$, PDB).

Tepee-Like Structures.—Tepee-like structures present in the basal Doushantuo cap carbonate (C1 and lower C2; Figs. 3–5) are cylindrical–domal forms in plan view with positive cross-sectional relief ranging from 0.1 to 0.5 m (Figs. 8B, 11). Unlike those found in peritidal environments (e.g., Kendall and Warren 1987), they are not polygonal and differ from anticlinal structures with linear axes interpreted by Allen and Hoffman (2005) as giant wave ripples, or those attributed to growth faults by Gammon et al. (2005) in the Nuccaleena Formation in the Parachilna Gorge area of south Australia. The tepees are present as isolated structures (Fig. 11A, B) or as linked structures traceable for tens of meters in available outcrop (e.g., Fig. 11C). The cores of tepees are commonly fractured (Fig. 11A, B) and brecciated (Fig. 11C–F), and show stromatolite-like cavities (Figs. 8B, 11E). The flanks of tepees are composed of laminated dolomite with or without sheet cracks and cemented breccias. Tepees are common where the basal cap carbonate (unit C1) is disrupted and cemented (Figs. 3–5). In some cases, brecciation of tepees is intense, leading to localized collapse with overlying layers draping downwards (Fig. 11F), but their lateral linkage indicates a genetic relationship. Overlying layers also onlap the tepees (e.g., Fig. 8B), and their exclusive occurrence within a discrete stratigraphic level at the basal cap carbonate indicates that they developed early during deposition (cf. Kennedy 1996; James et al. 2001).

Sheet Cracks.—Sheet cracks lined with dolomite, calcite, and quartz divide dolomicrite matrix into centimeter-scale units. They are found commonly on the flanks of tepee-like structures (Fig. 11A–C, E), pinch out towards the cores of those structures, and pass laterally into cemented breccias. They are also present as laterally persistent layers not directly associated with tepees, at least as far as can be determined in available outcrop. Sheet cracks are common in the most distal basin sections, where they form broad domes as much as 20 cm high and more than 2 m across. The thickness of individual sheet cracks varies from 0.5 to 3 cm, and is for the most part < 1 cm. In some cases, cement layers thicken locally into lenses 10–20 cm long and up to 5 cm thick.

Cemented Breccias.—Breccias are commonly associated with the tepees, stromatolite-like cavities, and sheet cracks described above (Figs. 3–5). Individual breccia clasts, from 2 to 8 cm across (e.g., Figs. 10, 11D–F), consist of dolomicrite and, less commonly in platform
sections of micritic limestone (e.g., Figs. 3, 4A, B). Associated isopachous cements are partially replaced by quartz. In some cases, breccias and sheet cracks are approximately concordant with depositional layers. More commonly, they intersect bedding at angles of greater than 20°. The close spatial association of breccias, sheet cracks, and tepee-like structures suggests that they are genetically related.

Barite Fans.—Barite crystals line cavities (e.g., Fig. 12A). Radiating blade-shaped crystals form fans (Fig. 12B) 0.5 to 2.5 cm across, and in some cases they are partially or completely replaced by calcite and quartz. Barite rims are overgrown by early-formed isopachous cements and in turn by late-stage dolospar, consistent with early formation, probably in cavities open to marine water. Barite fans are present exclusively in association with tepee-like structures and stromatolite-like cavities, and are not found above the base of unit C2. They share a morphological form similar to that of barite found in cold seeps described by Greinert et al. (2002a) and Torres et al. (2003).

STABLE ISOTOPES

Stable-isotope analysis of the Doushantuo cap carbonate has initially been reported in Jiang et al. (2003a) and Zhou et al. (2004). Additional measurements document the extreme isotopic heterogeneity in well-preserved limestone samples (Fig. 13) and reduced variability in dolomitized and silicified samples (Fig. 10). In the limestone crusts collected near the top of tepees, δ13C values vary from −1.7‰ to −41.3‰ (Fig. 13). Larger than 30‰ variations in δ13C occur within millimeters (Fig. 13). The most negative δ13C values (< −30‰) are obtained from yellowish microcrystalline calcite and dark-gray micrite. These samples also produced higher δ18O (> −8‰). Such isotopic heterogeneity is common in cold-seep environments where multiple sources of carbonate,
stages of cementation, and metabolic pathways lead to a strongly heterogeneous isotopic composition (e.g., Peckmann et al. 2002; Campbell et al. 2002). In contrast, cavity-filling, equant calcite spar (e.g., points 1, 3, 9, 14, and 17 in Fig. 13) has less depleted \(\delta^{13}C \) values (\(-2.8\)\%) but more negative \(\delta^{18}O \) values (\(<-11\)%). In pervasively dolomitized and silicified sections, absolute \(\delta^{13}C \) values in the basal cap carbonate (C1 and lower C2) display a much narrower range from \(-2.8\%\) to \(-1.5\%\), and some samples from sections 13 and 14 (Fig. 5C, D) yield positive \(\delta^{13}C \) values up to +1.5\%. Differences in \(\delta^{13}C \) as large as 5\% still exist within decimeter-size regions (e.g., Fig. 10). Oxygen isotope values are commonly \(<-10\%\), except in the case of coarse late-stage calcite and dolomite spars (e.g., points 19 and 20 in Fig. 10). Such isotopic heterogeneity implies that, at least in the basal cap carbonate, both \(\delta^{13}C \) and \(\delta^{18}O \) values are dominated by local, pore-scale processes rather than by broader, more uniform oceanographic changes. The extreme isotopic variability in limestone samples (Fig. 13) and less variability in dolomitized samples with similar cement fabrics suggest that pervasive dolomitization and silification may have significantly homogenized the isotopic compositions.

DISCUSSION

Depositional Environments

Cap carbonate units are commonly interpreted as having accumulated in relatively deep water, in most cases below storm wave base (e.g., Kennedy 1996; James et al. 2001; Nogueira et al. 2003; Allen and Hoffman 2005). The Doushantuo cap carbonate shares sedimentary features with these examples: (1) the predominance of mechanically laminated micrite and dolomicrite facies and (2) the absence of such characteristically peritidal sedimentary features as ooids, microbial laminae with fenestral fabrics, desiccation cracks, and cross-stratification, or evidence for appreciable wave or tidal activity, channels, shoaling cycles, or significant lateral facies changes. However, tube structures and stromatolites, which have been documented from cap carbonates in
Australia (Kennedy 1996), Namibia (Hegenberger 1987; Saylor et al. 1995; Kennedy et al. 2001; Hoffman and Schrag 2002), eastern California (Cloud et al. 1974; Kennedy et al. 2001), and Brazil (Nogueira et al. 2003), are not present in the Doushantuo cap carbonate. There is also no evidence for ice rafting in the Doushantuo, although carbonate deposition may have taken place while glacial ice was still present elsewhere on the planet, including landward of the shoreline.

The Doushantuo cap carbonate most likely accumulated in an open marine setting. Its broad distribution and the absence of evidence for a coeval stromatolitic carbonate factory argue against a shallow-marine source for the carbonate. Thin lamination suggests deposition from suspension. Normal grading and small-scale cross-lamination in some layers (Figs. 3–5) are attributed to redeposition by turbidity currents. Texturally well-preserved examples of peloids and clotted fabrics suggest precipitation of carbonate by microbially mediated processes within the water column (Chafetz 1986). Upsection trends within the cap carbonate are consistent with a decrease in carbonate saturation as available alkalinity was consumed and/or with an increase in the supply of terrigenous mud.

Interpretation of Sedimentary Structures and Textures

The close association of tepee-like structures, stromatolite-like cavities, sheet cracks, and cemented breccias in the Doushantuo cap carbonate (Figs. 3–5) indicates that these structures are genetically related. Tepee-like structures occur exclusively at locations where stromatolite-like cavities and sheet cracks are sufficiently well developed to cause brecciation (e.g., Figs. 8B, 11). Stratigraphically they appear in some sections at multiple horizons intercalated with stromatolite-like cavity-bearing micritic laminae (e.g., Figs. 3A, 4A, D, 5A). Stromatolite-like cavities, and in some cases, sheet cracks, are filled with interlayered internal sediments and isopachous cements (Fig. 9) indicative of syndepositional formation. All of these structures are restricted to a thin (< 2.5 m) basal level (C1 and lower C2; Figs. 3–5), display similar paragenetic cement sequences regardless of paleogeographic location, and are crosscut by later tectonic fractures and quartz veins, confirming their penecontemporaneous formation by the same process.

The creation of cavities (later filled by cements) and brecciated matrix within the cores of tepee-like structures, in combination with their seafloor expression, requires a force capable of buckling and splitting partially lithified (plastic) sedimentary bedding at a very shallow depth. The roughly circular plan (domal) of these structures argues against a tectonic, growth fault, or giant wave ripple origin that would produce a linear axial trace (cf. Allen and Hoffman 2005; Gammon et al. 2005), although we do not preclude such origins for “tepee-like” or antiformal structures elsewhere. At Mt Chambers Gorge in South Australia, both types of structure are present, with the Doushantuo-like domal forms concentrated at a discrete stratigraphic level (e.g., fig. 5 in Kennedy 1996) beneath elongate forms. In the Doushantuo examples, the existence in tepee cores of stromatolite-like cavities with varied cement morphology and mineralogy, abundant pyrite, synsedimentary barite fans, internal sediments, and strongly depleted carbon isotope values (as low as -41% PDB) associated with specific cement generations suggest a complex early diagenetic history involving fluids of varying composition at the sea floor.

These structures are not easily explained by deformation related to expansive crystalization alone (James et al. 2001), especially inasmuch as the stabilization to dolomite involves a 9% reduction in crystal volume (Arvidson and Mackenzie 1999). The lack of deformation and brecciation involving the underlying diamictite and overlying laminated carbonates, and the subvertical (to the paleohorizontal) orientation of tepees across the entire basin, do not favor seismicity-related deformation (e.g., Nogueria et al. 2003), nor does the complex diagenetic history. Rather, the creation of linked cavities and sheet cracks suggests progressive injection of gas or fluid into cohesive sediment of low permeability by buoyancy-driven buckling and failure leading to brecciation (cf. Cloud 1974), a process common in modern methane seeps (e.g., Bohrmann et al. 1998; Suess et al. 1999; Tryon et al. 2002; Van Dover et al. 2003).

In cold seeps documented from modern seafloor settings, gas ebullition from ascending methane at shallow depths dislocates pore space, creating cavities varying in size from 1 mm to 2 cm (e.g., Bohrmann et al. 1998; Suess et al. 1999; Greinert et al. 2002b). These cavities are partially filled with frambooidal or acicular aragonite or high-Mg calcite cements due to localized HCO_3^- supersaturation related to anaerobic methane oxidation (e.g., Bohrmann et al. 1998; Suess et al. 1999; Greinert et al. 2002b). Vertical movement of gas and fluids is commonly impeded by hydrostatic pressure or by impermeable fine-grained sedimentary layers or newly precipitated carbonate crusts, leading to lateral injections of gas and fluid along sedimentary bedding planes and the formation of layer-parallel conduits by buoyancy-driven forces (e.g., Tryon et al. 2002; Torres et al. 2004). This is recorded by the intercalation of gas hydrate layers a few
Fig. 11.—Field photos of the tepee-like structures from the Doushantuocap carbonate. A) Tepee-like structure with brecciated core and layer-parallel sheet cracks in the flanks. From unit C1 in Figure 4A. B) A tepee-like structure expressed as an asymmetric anticline with fractured core. From unit C2 in Figure 4A. C) Laterally linked small tepees with brecciated and cemented cores and layer-parallel sheet cracks in flanks. From unit C1 in Figure 4D. D) Plan view of the core of a tepee-like structure showing breccias and isopachous cements. From unit C1 in Figure 4D. E) A strongly brecciated tepee-like structure with intensive isopachous cements. Stromatactis-like cavities occur in the core of the tepee. From unit C1 in Figure 4D. F) Collapsed tepee-like structures with downward droops from the overlying layers. From unit C1 in Figure 4D.
The distinctive suite of sedimentary structures and textures in the Doushantuo cap carbonate is remarkably similar to features observed in modern methane seeps and other inferred ancient analogues. Linked sheet cracks and stromatactis-like cavities in the basal Doushantuo cap carbonate (unit C1) vary in sizes from < 0.5 cm to 5 cm and are lined with pyrite-rich isopachous botryoidal or columnar cements (Fig. 9), consistent with the creation of cavities by lateral (along bedding planes) and vertical (between cavities) gas expulsion in cohesive pelagic or hemipelagic carbonate mud of low permeability. Flat-roofed stromatactis-like cavities (e.g., Fig. 9A) suggests downward-directed precipitation due to gas buoyancy, similar to examples documented from modern (e.g., Greinert et al. 2002b) and ancient (e.g., Peckmann et al. 2002; Peckmann and Thiel 2004) methane seeps. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) are consistent with locally elevated pressure and vigorous gas venting. Pyrite and barite, combined with strongly depleted carbon isotope values (~41% PDB), suggest an origin from sulfate oxidation of methane by a microbial consortium.

Bedding-parallel dissolution features in the upper cap carbonate (unit C3; Figs. 4E, G, 5C) may reflect a change in lysocline depth related to methane oxidation (e.g., Dickens et al. 1997) or changes in local chemical composition such as higher HS⁻ concentration common around seeps (e.g., Campbell et al. 2002). More work is needed to elucidate such details, particularly sulfur isotope studies of pyrite.

Carbon isotope values as low as ~41% in well-preserved limestone crusts within the tepees (Fig. 13; Jiang et al. 2003a) provide unequivocal evidence for methane influence that, when considered in context with the other seep-related features, argues strongly against a diagenetic methane seep. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) suggests downward-directed precipitation due to gas buoyancy, similar to examples documented from modern (e.g., Bohrmann et al. 1998; Suess et al. 2001) and ancient (e.g., Peckmann et al. 2002; Peckmann and Thiel 2004) methane seeps. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) are consistent with locally elevated pressure and vigorous gas venting. Pyrite and barite, combined with strongly depleted carbon isotope values (~41% PDB), suggest an origin from sulfate oxidation of methane by a microbial consortium.

Bedding-parallel dissolution features in the upper cap carbonate (unit C3; Figs. 4E, G, 5C) may reflect a change in lysocline depth related to methane oxidation (e.g., Dickens et al. 1997) or changes in local chemical composition such as higher HS⁻ concentration common around seeps (e.g., Campbell et al. 2002). More work is needed to elucidate such details, particularly sulfur isotope studies of pyrite.

Carbon isotope values as low as ~41% in well-preserved limestone crusts within the tepees (Fig. 13; Jiang et al. 2003a) provide unequivocal evidence for methane influence that, when considered in context with the other seep-related features, argues strongly against a diagenetic methane seep. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) suggests downward-directed precipitation due to gas buoyancy, similar to examples documented from modern (e.g., Bohrmann et al. 1998; Suess et al. 2001) and ancient (e.g., Peckmann et al. 2002; Peckmann and Thiel 2004) methane seeps. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) are consistent with locally elevated pressure and vigorous gas venting. Pyrite and barite, combined with strongly depleted carbon isotope values (~41% PDB), suggest an origin from sulfate oxidation of methane by a microbial consortium.

Bedding-parallel dissolution features in the upper cap carbonate (unit C3; Figs. 4E, G, 5C) may reflect a change in lysocline depth related to methane oxidation (e.g., Dickens et al. 1997) or changes in local chemical composition such as higher HS⁻ concentration common around seeps (e.g., Campbell et al. 2002). More work is needed to elucidate such details, particularly sulfur isotope studies of pyrite.

Carbon isotope values as low as ~41% in well-preserved limestone crusts within the tepees (Fig. 13; Jiang et al. 2003a) provide unequivocal evidence for methane influence that, when considered in context with the other seep-related features, argues strongly against a diagenetic methane seep. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) suggests downward-directed precipitation due to gas buoyancy, similar to examples documented from modern (e.g., Bohrmann et al. 1998; Suess et al. 2001) and ancient (e.g., Peckmann et al. 2002; Peckmann and Thiel 2004) methane seeps. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) are consistent with locally elevated pressure and vigorous gas venting. Pyrite and barite, combined with strongly depleted carbon isotope values (~41% PDB), suggest an origin from sulfate oxidation of methane by a microbial consortium.

Bedding-parallel dissolution features in the upper cap carbonate (unit C3; Figs. 4E, G, 5C) may reflect a change in lysocline depth related to methane oxidation (e.g., Dickens et al. 1997) or changes in local chemical composition such as higher HS⁻ concentration common around seeps (e.g., Campbell et al. 2002). More work is needed to elucidate such details, particularly sulfur isotope studies of pyrite.

Carbon isotope values as low as ~41% in well-preserved limestone crusts within the tepees (Fig. 13; Jiang et al. 2003a) provide unequivocal evidence for methane influence that, when considered in context with the other seep-related features, argues strongly against a diagenetic methane seep. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) suggests downward-directed precipitation due to gas buoyancy, similar to examples documented from modern (e.g., Bohrmann et al. 1998; Suess et al. 2001) and ancient (e.g., Peckmann et al. 2002; Peckmann and Thiel 2004) methane seeps. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) are consistent with locally elevated pressure and vigorous gas venting. Pyrite and barite, combined with strongly depleted carbon isotope values (~41% PDB), suggest an origin from sulfate oxidation of methane by a microbial consortium.

Carbon isotope values as low as ~41% in well-preserved limestone crusts within the tepees (Fig. 13; Jiang et al. 2003a) provide unequivocal evidence for methane influence that, when considered in context with the other seep-related features, argues strongly against a diagenetic methane seep. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) suggests downward-directed precipitation due to gas buoyancy, similar to examples documented from modern (e.g., Bohrmann et al. 1998; Suess et al. 2001) and ancient (e.g., Peckmann et al. 2002; Peckmann and Thiel 2004) methane seeps. Fracturing, brecciation, and the development of cavities within the tepee-like structures (Figs. 8B, 11) are consistent with locally elevated pressure and vigorous gas venting. Pyrite and barite, combined with strongly depleted carbon isotope values (~41% PDB), suggest an origin from sulfate oxidation of methane by a microbial consortium.
(Kennedy et al. 2001). Postglacial warming is inferred to have been sufficient, even in the deep ocean, to destabilize the entire gas-hydrate inventory. The restriction of the distinctive sedimentary structures and textures to the hemipelagic and pelagic deposits of the basal cap carbonate (C1) in each platform-to-basin transect (Figs. 3–5) provides an important constraint on the timing of methane release. The basal cap carbonate (C1) is strongly disrupted, with abundant stromatolite-like cavities appearing at the lower contact and extending upward into the base of unit C2. We infer that methane release began during the deposition of unit C1, and perhaps earlier. Direct physical evidence would be recognized with diamicrite given the significant difference in permeability. Methane release ceased during the deposition of unit C2.

Methane Release in a Supersaturated Ocean: an Explanation for Cap Carbonates and Their Associated δ^{13}C Anomaly

The stratigraphy, sedimentary structures, and textures of the Doushantuo cap carbonate, in combination with the δ^{13}C anomaly and similar physical features from other cap carbonate examples (e.g., Kennedy et al. 2001), support the widespread release of methane at the end of the Marinoan glaciation (Fig. 14). Methane released by gas-hydrate destabilization could have been oxidized either anaerobically (e.g., Boetius et al. 2000) or aerobically (e.g., Katz et al. 1999).

Anaerobic methane oxidation (CH$_4$ + SO$_4^{2-}$ → CO$_2$ + HS$^-$ + H$_2$O; Fig. 14A) has two important consequences. One is the localized supersaturation of HCO$_3^-$ near the seawater-sediment contact and in pore fluids, leading to precipitation of carbonate crusts and cements. Such crusts and cements would have a wide range of δ^{13}C values, from −50‰ to +6‰ (e.g., Kaufmann et al. 1996; Aiello et al. 2001; Campbell et al. 2002; Peckmann et al. 2002; Formolo et al. 2004; Peckmann and Thiel 2004), depending on the hydrocarbon source, ambient seawater mixing ratio, and subsequent diagenetic stabilization. This expectation is consistent with our data for carbonate cements in the Doushantuo cap carbonate. As is the case for many modern and ancient examples of methane seeps, only rarely is the full range of carbon isotope values preserved, owing to isotopic homogenization during diagenesis (Aiello et al. 2001; Campbell et al. 2002; Jiang et al. 2003a). A second consequence of anaerobic methane oxidation is a corresponding positive seawater sulfur isotope excursion and a substantial reduction in the standing stock of sulfate in seawater from the anaerobic oxidation of methane by sulfate. This is consistent with the nadir in seawater sulfate concentration and the positive δ^{34}S values at the upper cap carbonate level reported in the literature (e.g., Hurnten et al. 2002; Zhang et al. 2003).

A portion of the methane released into the ocean would have been oxidized aerobically to CO$_2$ (CH$_4$ + O$_2$ → CO$_2$ + 2H$_2$O; Fig. 14A, B), either in the water column or in the atmosphere. A pulse of methane-derived CO$_2$ would have led to carbonate dissolution and conceivably to a rise in the lysolcine (e.g., Dickens et al. 1997). Over longer timescales, however, this 12C-enriched source of carbon would lead to the precipitation of carbonate, possibly driving the negative δ^{13}C excursion

Fig. 13.—Isotopic compositions from a limestone crust right above a tepee-like structure in Figure 4A (2.1 m in the column). Notice the large δ^{13}C variations (up to −30%) at millimeter to centimeter scales. The most negative δ^{13}C values (< −30‰) with relatively heavy δ^{18}O values (> −8‰) are from yellowish microcrystalline limestone (YC) and dark-gray micrite (points 6, 7, 11, 12, 23, 24, 27, 28, 29), while cavity-filling calcite spars (e.g., points 1, 3, 9, 14, and 17) have less depleted δ^{13}C (> −8‰) but more negative δ^{18}O values (< −11‰).
recorded by the Doushantuo and other cap carbonates. More importantly, aerobic methane oxidation in the water column may have resulted in oxygen drawdown, causing a marine biotic crisis (e.g., Harries and Little 1999; Hesselbo et al. 2000) and fluctuation in atmospheric oxygen. If the negative $\delta^{13}C$ excursion (estimated as -2.4% to -4.3%; Jiang et al. 2003a) recorded by cap carbonates represents a global event caused by the addition of methane to the seawater and atmosphere, it would need 2.3×10^{17} moles of CH$_4$ (Kennedy et al. 2001; Jiang et al. 2003a). Aerobic oxidation (CH$_4$ + 2O$_2$ \rightarrow CO$_2$ + 2H$_2$O) of this amount of methane would require 5.0×10^{17} moles of O$_2$, which is more than twice to four times the total amount of free oxygen stored in modern seawater (2.0×10^{17} moles of O$_2$). We recognize the uncertainties inherent in such estimates, related in part to uncertainties in the partial pressure of oxygen in the Neoproterozoic atmosphere and the sulfate concentration of seawater. It is nevertheless conceivable that methane hydrate destabilization could have driven the oceans towards anoxia, influencing biological innovation during this critical period of time. Strong variations in the partial pressure of oxygen mediated by the methane cycle may have played an influential role in metazoan evolution (e.g., Knoll and Holland 1995; Runnegar 2000).

Methane release in a supersaturated ocean (Fig. 14) provides a simple yet compelling explanation for the sedimentary structures, textures, and associated carbon isotope excursion of cap carbonates. The sources of carbonate alkalinity responsible for the supersaturation of the ocean

Fig. 14. Hypothetical model for methane release in a supersaturated ocean based on the Doushantuo cap carbonate stratigraphy, sedimentary structures, and isotopic trends. A) Methane release from destabilization of gas hydrate into the supersaturated ocean during C1 deposition. Methane gas and fluids physically disrupt bedding, resulting in formation of observed structures. Methane may have been partially oxidized anaerobically (CH$_4$ + SO$_4^{2-}$ \rightarrow HCO$_3^{-}$ + HS$^-$ + H$_2$O) near seawater–sediment contact, leading to precipitation of carbonate crusts and cements. Assuming that seawater was supersaturated, precipitation of crusts and cements would have involved carbonate ions already in the seawater, resulting in the mixing of isotopically different carbon sources in carbonate crusts and cements. Methane could also have been partially oxidized aerobically (CH$_4$ + 2O$_2$ \rightarrow CO$_2$ + 2H$_2$O) in the water column and/or in the atmosphere to produce CO$_2$, causing ocean anoxia and potential fluctuation of atmospheric oxygen concentration. B) Methane release ended by the time of deposition of the upper part of unit C2, and methane-derived carbon joined the existing alkalinity in the ocean to precipitate units C2 and C3, resulting in basin to global $\delta^{13}C$ excursion. C) Carbonate precipitation and/or increase of terrigenous mud finally consumed and/or diluted the supersaturation state of seawater, which returned gradually to normal condition.
during the precipitation of the carbonate are not as well established. Mass-balance considerations (cf. Dickens et al. 1995) indicate that even if the entire present-day gas-hydrate reservoir were destabilized (e.g., Kvenvolden 1988, 2002; Haq 1999), only about 1.0 \times 10^{19} \text{g of carbon would be made available. That is roughly equivalent to 1.2 m of carbonate distributed over an area comparable to the present-day continental shelves. However, considering the extremely cold climate during Marinoan ice age, a much larger methane-hydrate inventory was possible. Additional sources of alkalinity contributing to cap-carbonate deposition may include (1) continental weathering during deglaciation (Hoffman et al. 1998; Higgins and Schrag 2003), (2) alkalinity retained in seawater as a result of stratification (Grotzinger and Knoll 1995; Knoll et al. 1996; Kaufman et al. 1997), and (3) excess alkalinity sequestered within the glacial ocean and redelivered to the shelf during transgression (Ridgwell et al. 2003; Ridgwell and Kennedy 2004).

CONCLUSIONS

The Doushantuo cap carbonate (ca. 635 Ma), less than 5 m thick, overlying the glaciogenic Nantuo Formation in South China is interpreted as having accumulated in relatively deep water (below storm wave base) during deglaciation. Localized stromatolite-like cavities, tepee-like structures, sheet cracks, and associated brecias, along with barite fans, abundant pyrite, and multiple generations of carbonate cement with strongly depleted carbon isotopic values in the basal units of this carbonate are interpreted as ancient methane seeps formed by comparatively short-lived gas-hydrate destabilization in the aftermath of a glaciation. The presence of methane-related sedimentary structures and textures even in the deep basin suggests that postglacial warming was sufficient to destabilize the marine gas-hydrate inventory as well as any permafrost-related hydrates. The Doushantuo Formation provides one of the best preserved examples of a cap carbonate, at least locally retaining primary mineralogy and isotopic variability. It thus provides a rare opportunity to examine the primary processes that may have resulted in the enigmatic sedimentary structures and textures endemic to other Marinoan age cap carbonates globally.

Widespread postglacial methane release provides a simple yet compelling explanation for the sedimentary structures, textures, and associated carbon isotope excursion of the Doushantuo cap carbonate and other cap carbonates globally. This event may have important implications for the oxygen budget and hence for biological innovation during the latest Neoproterozoic (the Ediacaran Period). Refining the timing and trigger of gas-hydrate destabilization, quantifying methane oxidation in the water column and resultant ocean anoxia, and elucidating biological details through cap carbonates into overlying strata offer a test of this hypothesis.

ACKNOWLEDGMENTS

We thank Ziqiang Wang, Xiaoying Shi, Linzhi Gao, Chongyang Yin, Yongqing Liu, Yangeng Wang, Niting Wang, Yongqi Chen, Xiaohong Chen, and Xiaofeng Wang for their guidance and discussions on the best outcrops and representative sections; and Dameng Liu, Guobiao Li, and their students for assistance in preparing and shipping the samples. David D. Mrofka and Thomas Bristow at the University of California, Riverside, conducted the isotopic analysis and contributed to the discussions in the field. Discussions with Professor Yongfei Zheng helped to improve the sections related to the tectonic history of South China. We express our sincere appreciation to Drs. Katherine A. Giles (Associate Editor), Daniel J. Lehrmann, an anonymous reviewer, and Journal Editor Kitty Milliken, who reviewed the manuscript and provided many valuable suggestions that significantly improved the paper. Editorial work by Dr. John B. Southard is also highly appreciated. This research is supported by National Science Foundation grants EAR0345207 and EAR0345642.

REFERENCES

Moore, C.H., 1989, Carbonate diagenesis and porosity: Amsterdam, Elsevier, 338 p.

Sandberg, P., 1985, Aragonite cements and their occurrence in ancient limestones, in Schneidermann, N., and Harris, P.M., eds., Carbonate Cements: SEPM, Special Publication 36, p. 33–57.

Seay, B.S., Grotzinger, J.P., and Germs, G.J.B., 1995, Sequence stratigraphy and sedimentology of the Neoproterozoic Kubis and Schwarzrand subgroups (Nama Group), southwestern纳米a: Precambrian Research, v. 73, p. 153–171.

Steinm, M., Mihl, D., Reitner, J., and Erdtmann, B.-D., 1993, Oldest entirely preserved Stromatolites and other fossils from the lowest Cambrian and a new reclassification of the Yangtze platform (China): Berin Geowissenschaftliche Abhandlungen (E). v. 9, p. 293–329.
THE DOUSHANTUO CAP CARBONATE IN SOUTH CHINA

Received 28 April 2005; accepted 25 January 2006.